Malicious Security, Continued
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Today’s objectives

Review malicious security (with abort)
Discuss commitments

Understand “rewinding” in simulation proofs

See a proof for a (slightly) less contrived protocol



Malicious Security (with abort)
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A protocol 11 securely realizes a functionality f in the presence of a
malicious (with abort) adversary if for every real-world adversary <A
corrupting party i, there exists an ideal-world adversary & ; (a

simulator) such that for all inputs x, y the following holds:
Realg(x, y) & Idealf;i(x, y)
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Ensemble of outputs of each party




Malicious security with abort ideal-world execution

ABORT

' continue, y’

Jx,y)

lrusted
fey)  Third Party | &ominue

' ' continue

honest party outputs adversary outputs... ?

Jx,y) whatever it wants



Real World Protocol
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Real World Protocol




Real World Protocol
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Ideal World Protocol

Security is defined by
comparing the outputs
In these two worlds




Real World Protocol
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Ideal World Protocol










ABORT
with Output
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Real World Protocol
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Ideal World Protocol




Real World Protocol
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Commitment Scheme

Commitments are digital analog of a lock box



Commitment Scheme

Commitments are digital analog of a lock box

| can put a message in the lock box and then give it to you
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Commitment Scheme

Commitments are digital analog of a lock box
| can put a message in the lock box and then give it to you

| can send you a key, allowing you to open the lock box
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Commitment Scheme

| am confident you cannot open the box without the key



Commitment Scheme

| am confident you cannot open the box without the key

L |

You are confident | cannot tamper with the content of the box

Binding



Commitment Scheme

Commitment to x with

com(x; r) ;

randomness r < {0,1}



Commitment Scheme

Commitment to x with

com(x; r) ;

randomness r < {0,1}

com(x; r) ~ C()m(y; r) Computationally hiding



Commitment Scheme

Commitment to x with

com(x; r) ;

randomness r < {0,1}

com(x; r) ~ C()m(y; r) Computationally hiding

x #y = & cannot find com(x; r) = com(y; r)

Perfectly Binding



Example Functionality
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An even simpler functionality
5

f)={rlre{0l}} ¢
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An even simpler functionality

f)={rlr<{0ol}} ¢
Attempt

b, < (0,1}

by < {0,1)
2%




An even simpler functionality

f)={rlr<{0ol}} ¢
Attempt

b, < (0,1}

by < {0,1)
2%

Can choose b,
based on b,




by < (0,1}

An even simpler functionality

f)={rlre{0l}} ¢

)

Attempt

'
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b, < (0,1}

Can choose b,
based on b,

Could have Bob
choose first, but this
just lets Bob cheat



An even simpler functionality

\
fly={rlr<{ol1}} ¢
Attempt
by < {0,1) b, < {0,1)
g Can choose b,

based on b,
Use a

commitment!



How To Simulate It — A Tutorial on the Simulation
Proof Technique®

Yehuda Lindell

Dept. of Computer Science
Bar-Ilan University, ISRAEL
lindell@biun.ac.il

April 25, 2021

Abstract

One of the most fundamental notions of cryptography is that of sernulation. It stands behind
the concepts of semantic security, zera knowledge, and security for multiparty computation.
However, writing a simulator and proving sceurity via the use of simulation i3 & non-trivial task,
and one that mary neweomers to the field ofter find diffictlt In this tutorial, we provide a

guide to how to write simulators and prove security via the simulation paradigm. Althcugh we
have triec to make this tutorial as stard-alone as possible, we assume some familiarity with the

nctions of szcure encryplivn, zero-knowledge, and secure commpulation.

Keywords: secure computation, the simulation technique, tutorial

*This tutorial appeased in the book Tutcriais on the Foundaotions of Cryptogrephy, puslished in honor of Oded
Golcdrelch’s 60th birthday.
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b, < {01}

C = Com(by; r)
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abort by @ b,

(b, = 0 If Alice aborts)
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: by < {0.1)
b()(_ {091} C =C0m(b(), r)
r < (0,1} T — '

b,

b ) 9
‘ O—r ¢ = Com(by; )
bo @ bl

abort by @ b,

. continue; @ f
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Suppose by, D b; = s

continue; @

Contlnue
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2 (0,1}
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output

output
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Whatif by D b, # 5 ?

Try again!!
I

co“‘@ y
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r<—{01}’1

{01}
r <—{01}ﬂ

51




Today’s objectives

Review malicious security (with abort)
Discuss commitments

Understand “rewinding” in simulation proofs

See a proof for a (slightly) less contrived protocol



