Malicious Security, Continued CS 598 DH

Today's objectives

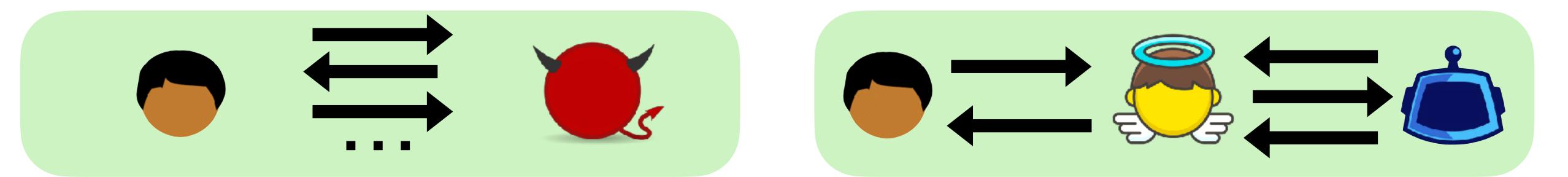
Review malicious security (with abort)

Discuss commitments

Understand "rewinding" in simulation proofs

See a proof for a (slightly) less contrived protocol

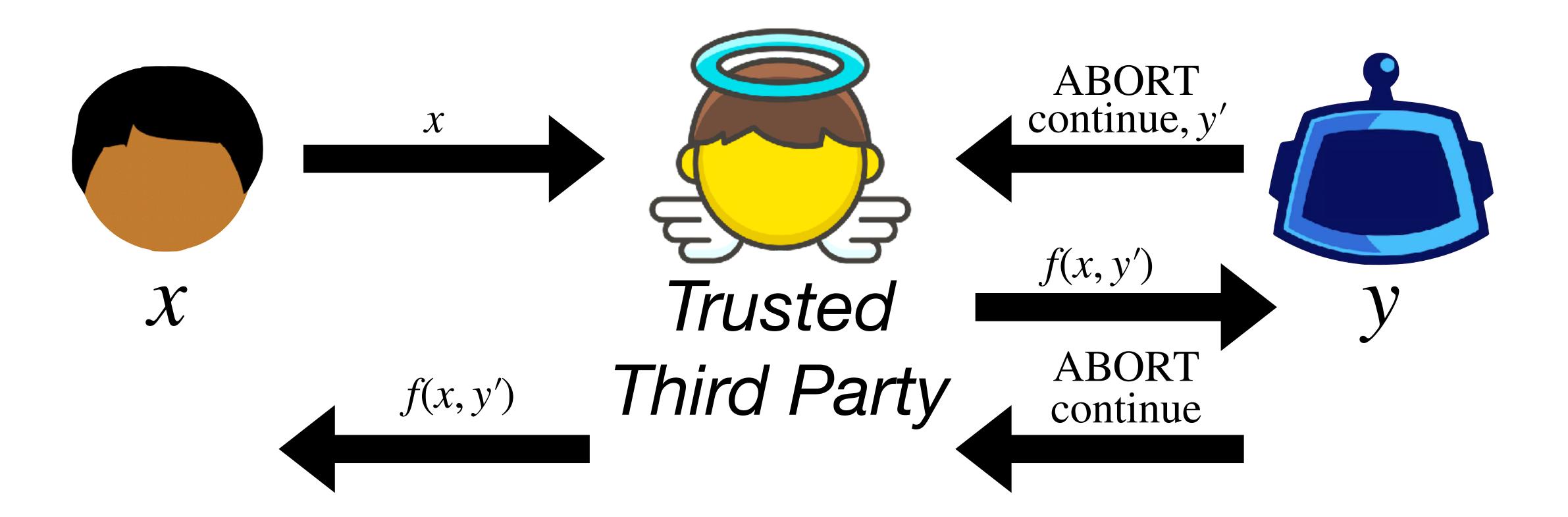
Malicious Security (with abort)



A protocol Π securely realizes a functionality f in the presence of a malicious (with abort) adversary if for **every** real-world adversary \mathscr{A} corrupting party *i*, there exists an ideal-world adversary S_i (a simulator) such that for all inputs *x*, *y* the following holds: $\operatorname{Real}_{\mathscr{A}}^{\Pi}(x, y) \approx \operatorname{Ideal}_{\mathscr{S}_{i}}^{f}(x, y)$

Ensemble of outputs of each party

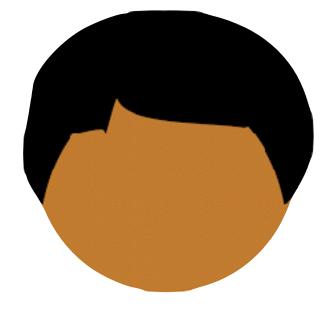
Malicious security with abort ideal-world execution



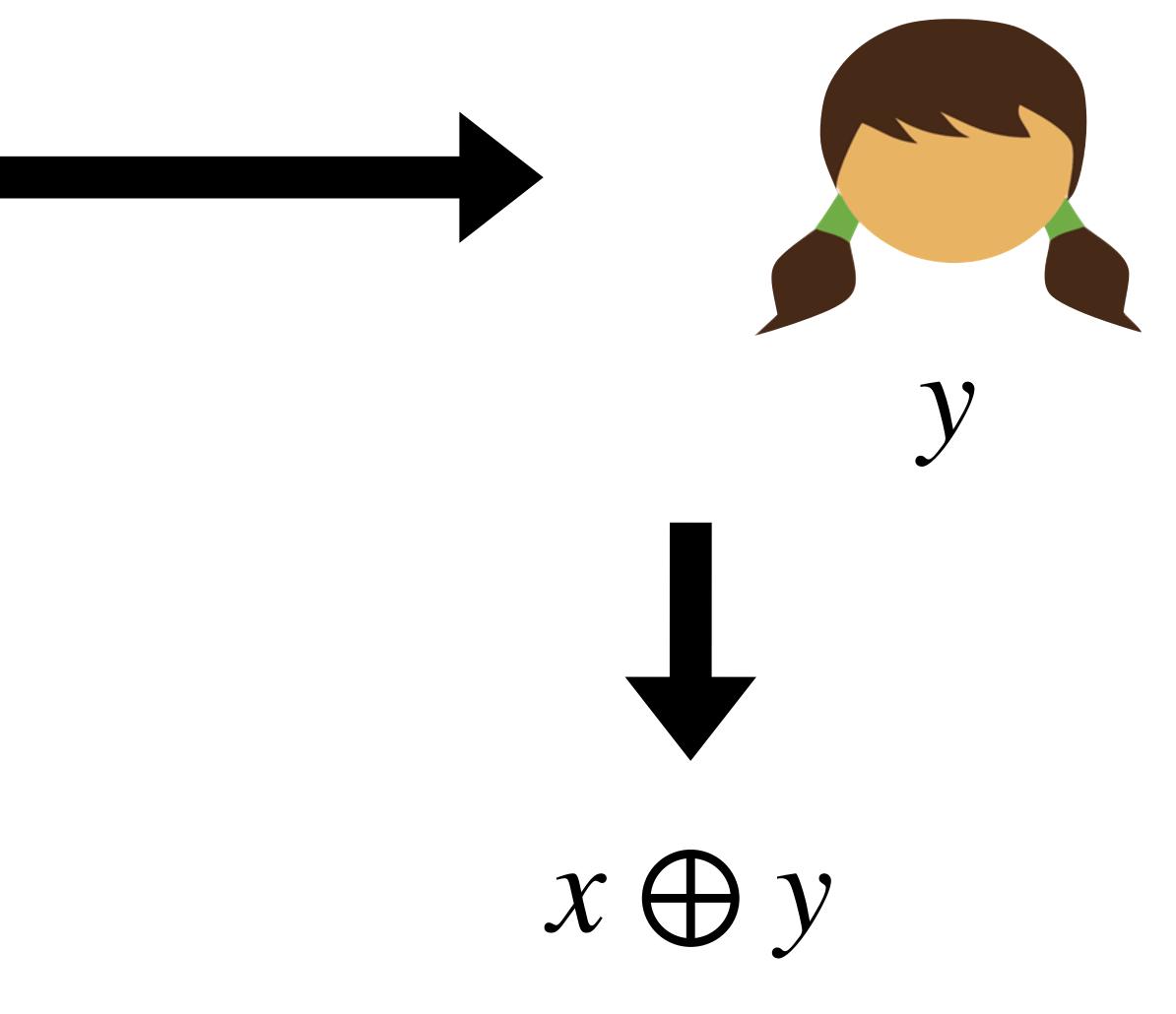
honest party outputs f(x, y')

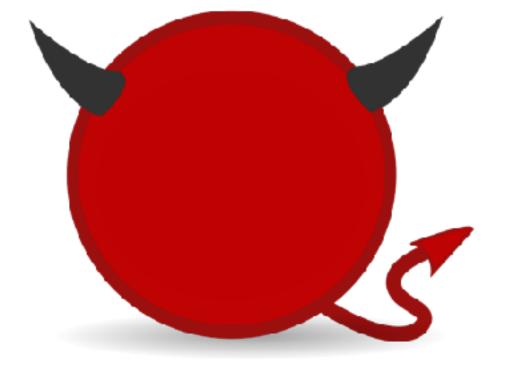
adversary outputs...?

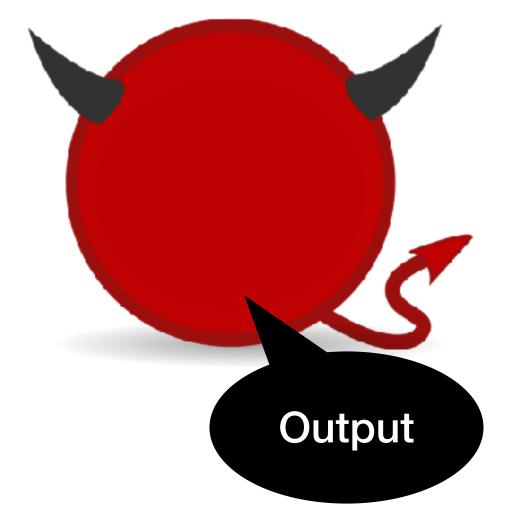
whatever it wants

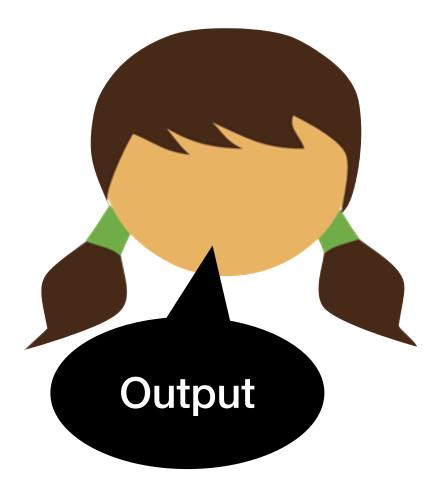


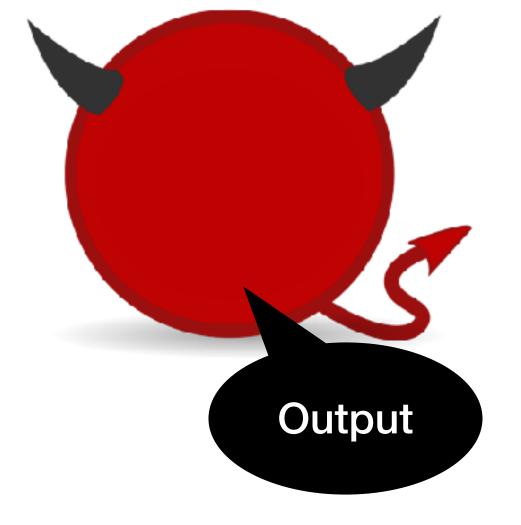
 ${\mathcal X}$





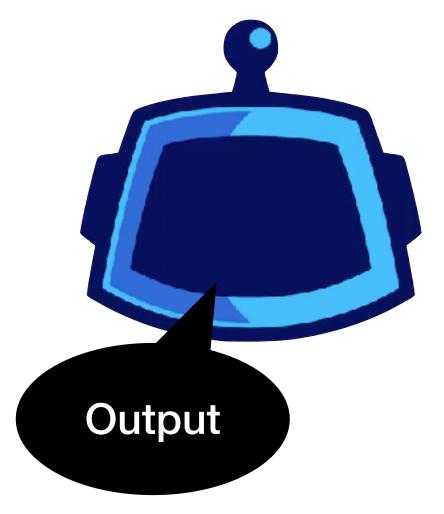


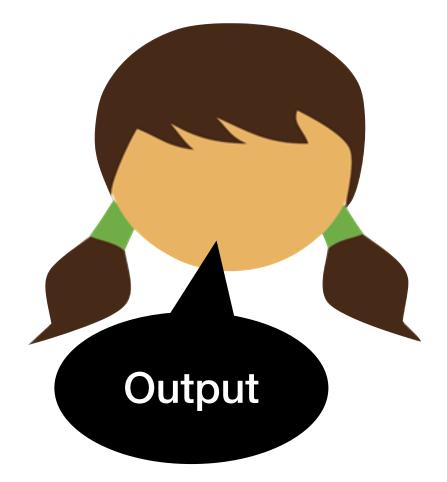


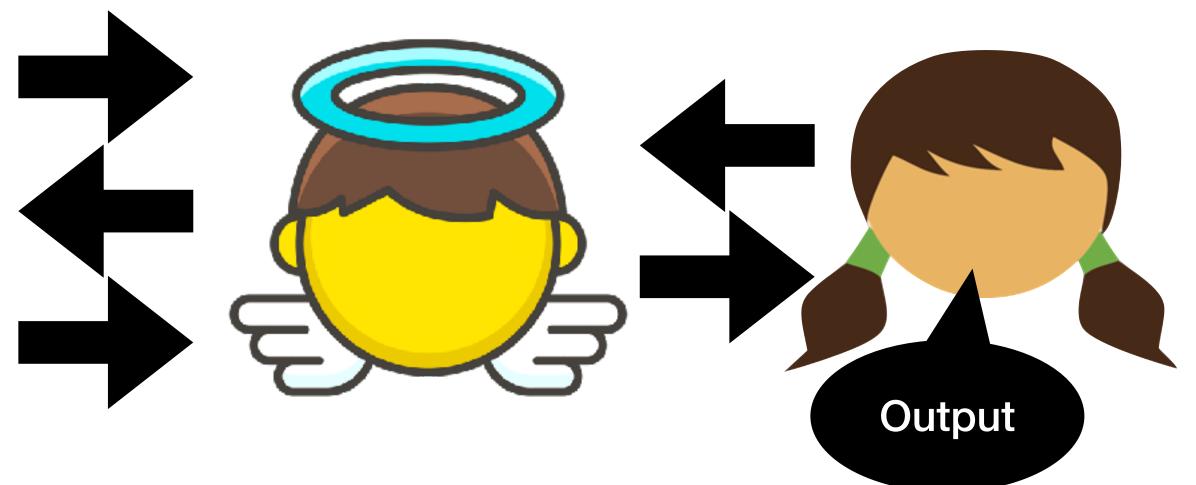


Ideal World Protocol

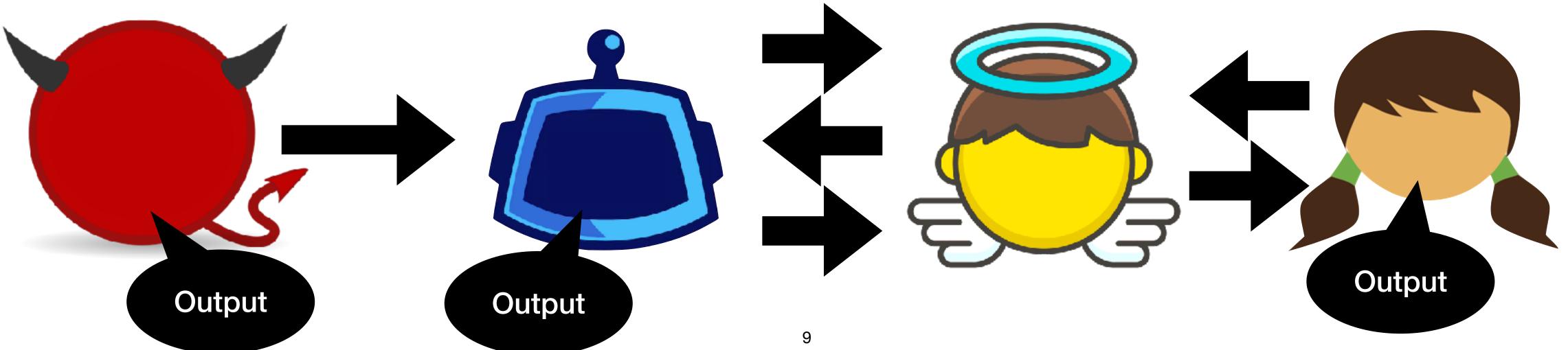
Security is defined by comparing the outputs in these two worlds

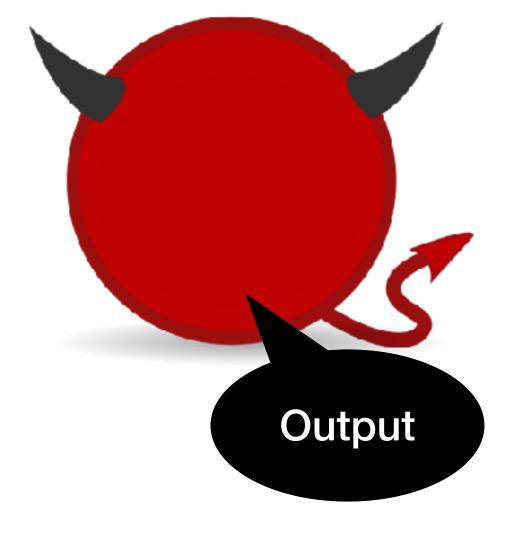


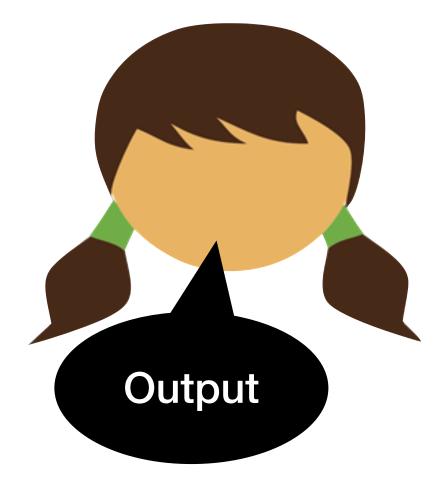


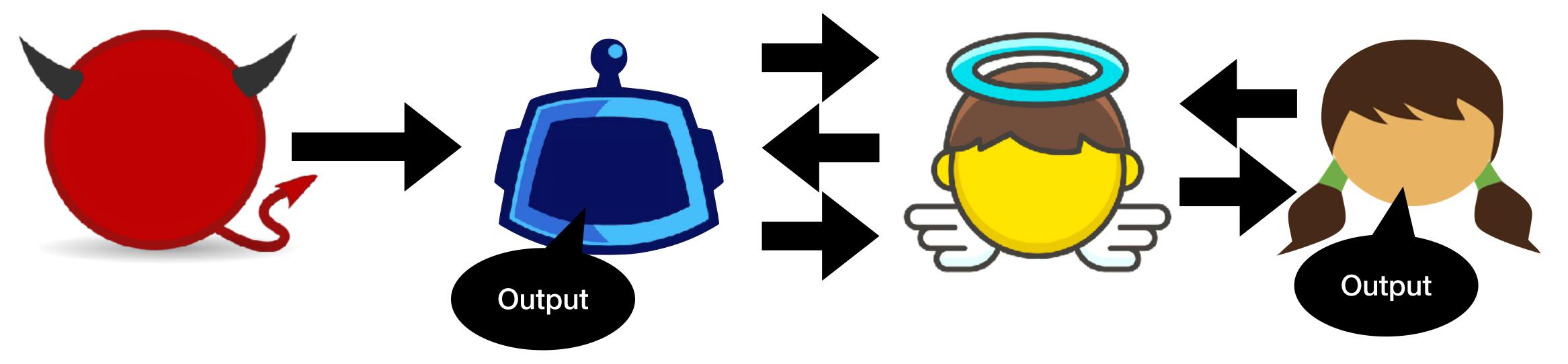


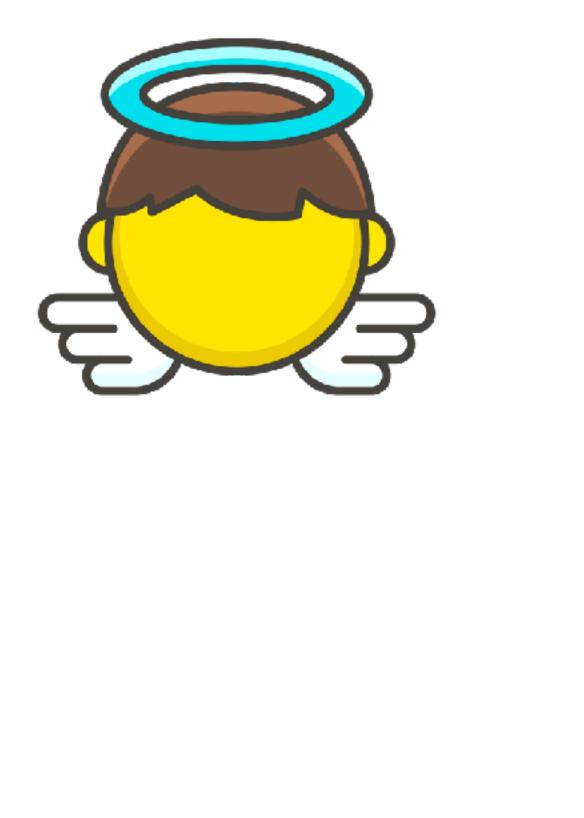
Ideal World Protocol

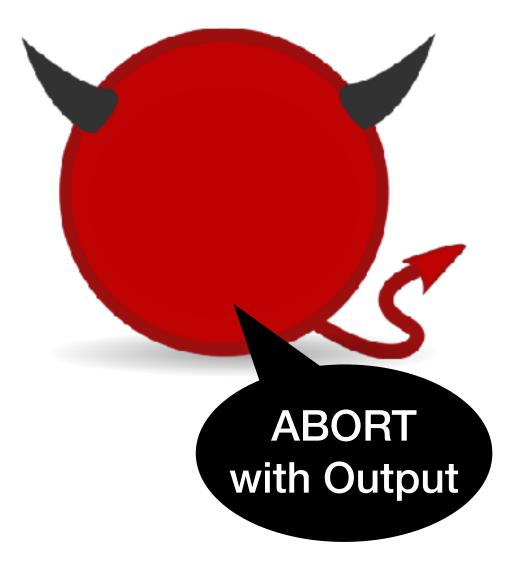


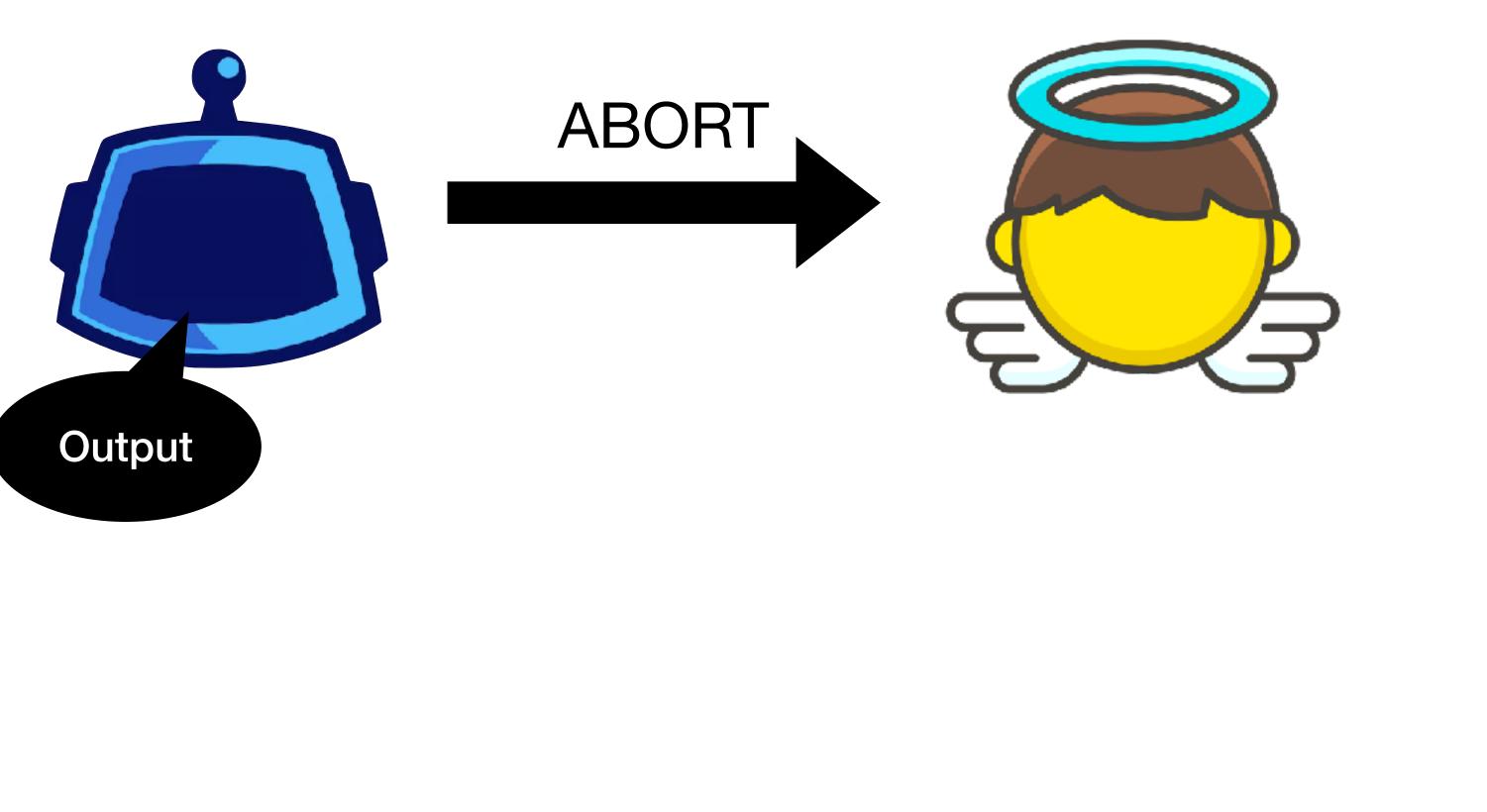


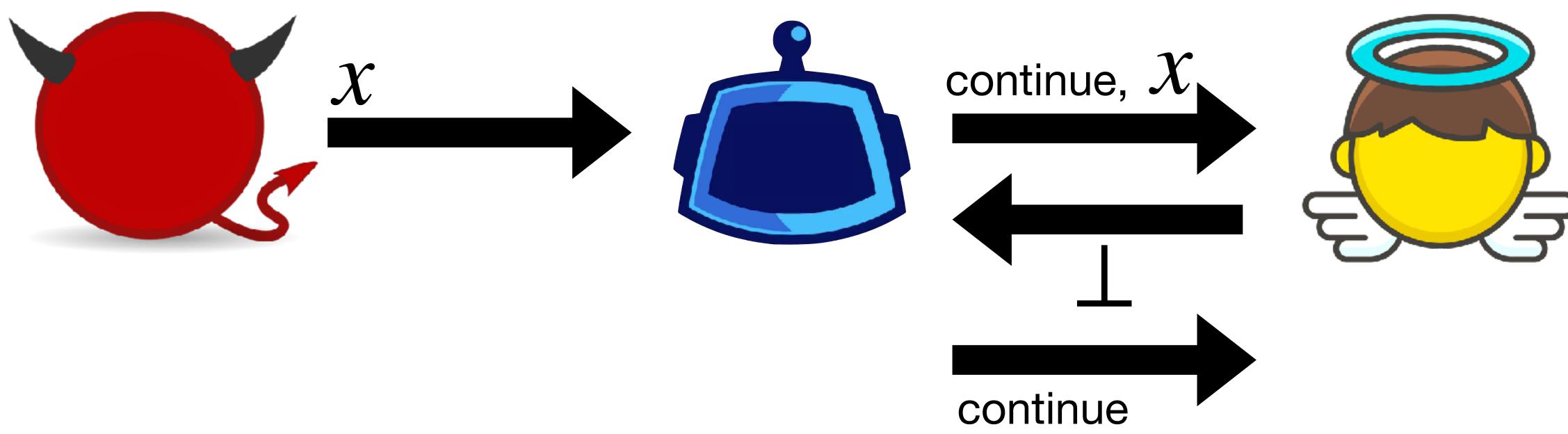


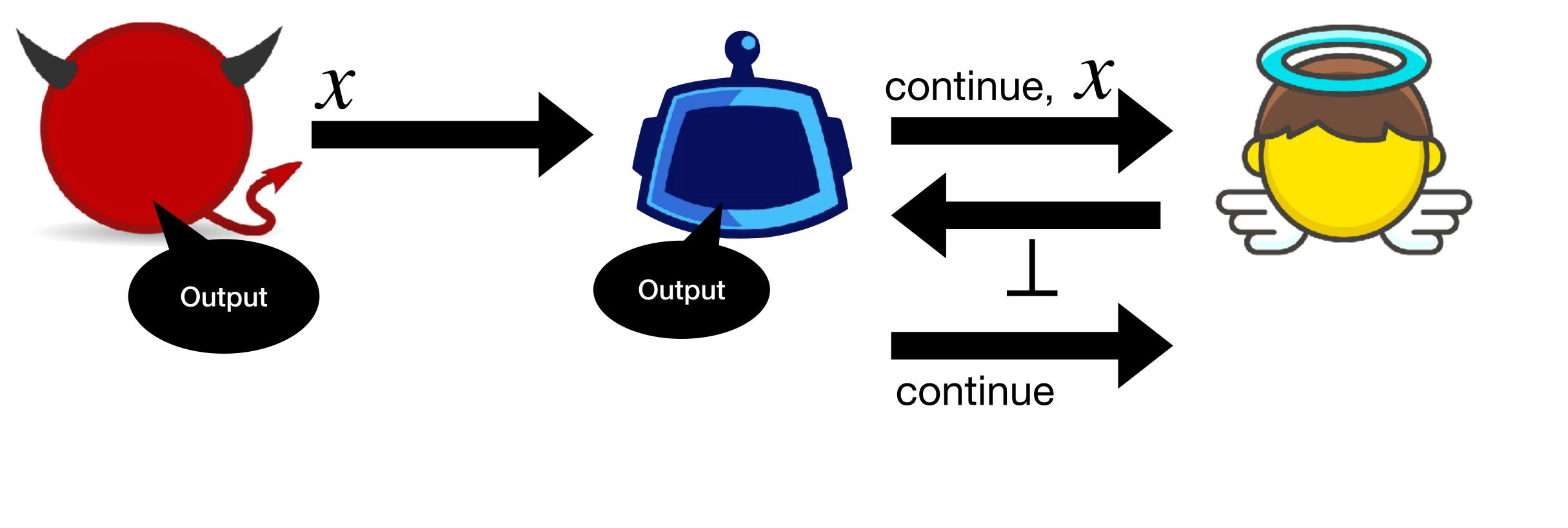


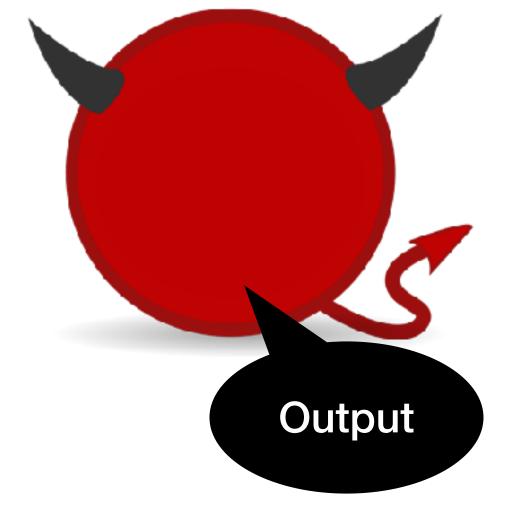




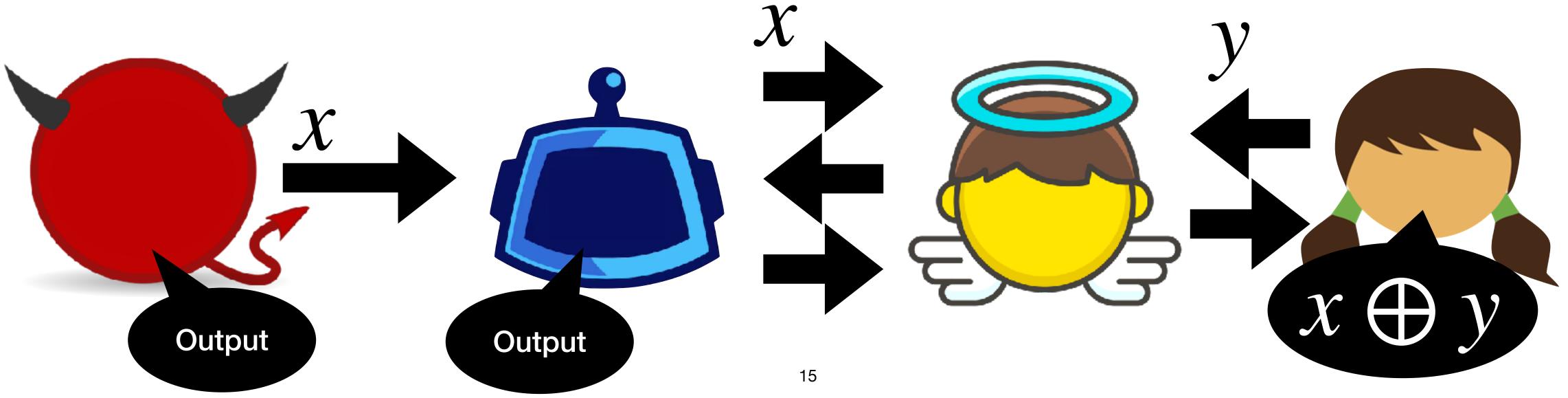


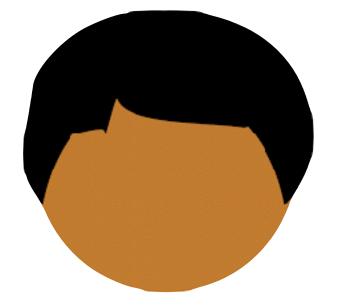


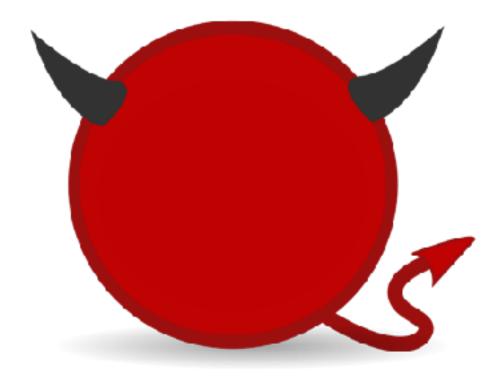


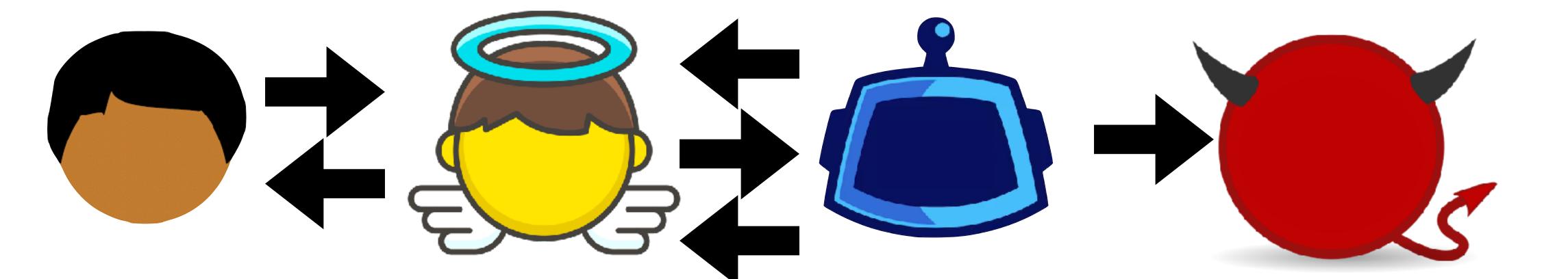


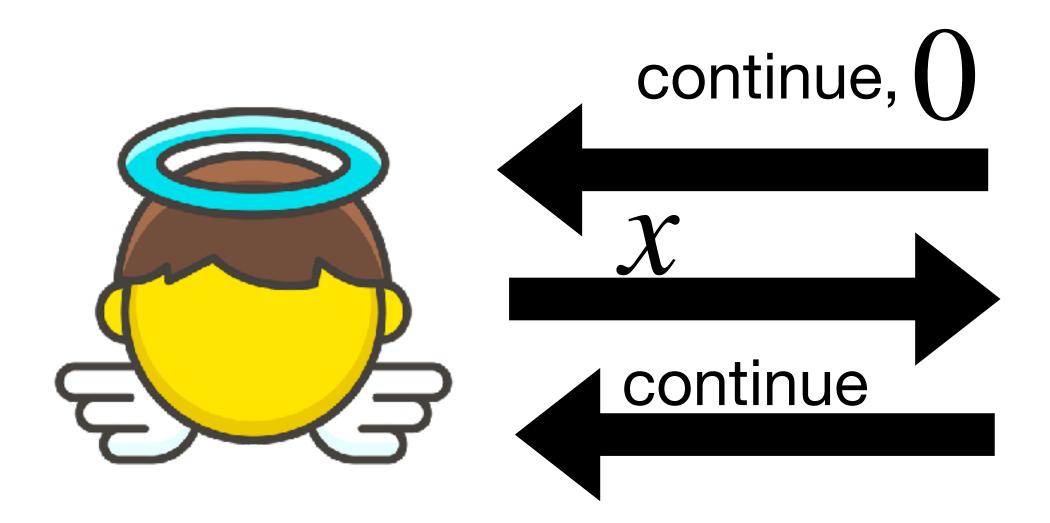
X

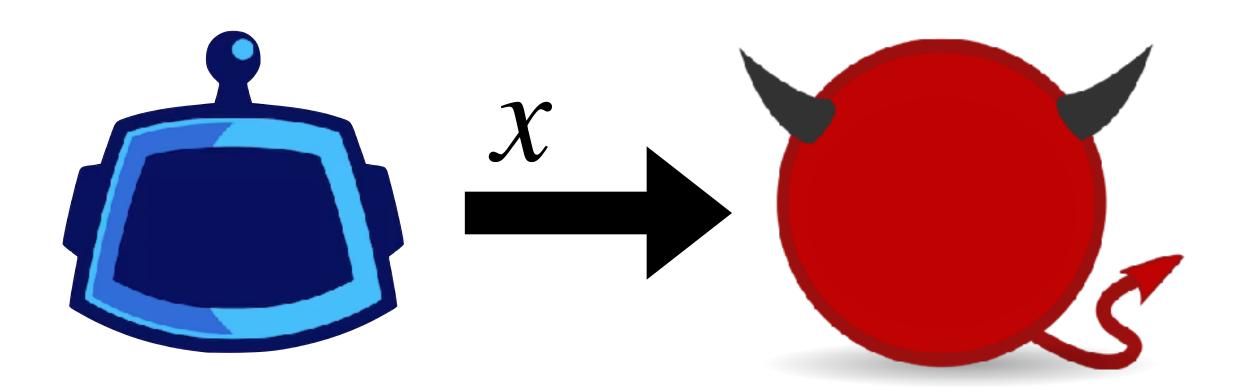


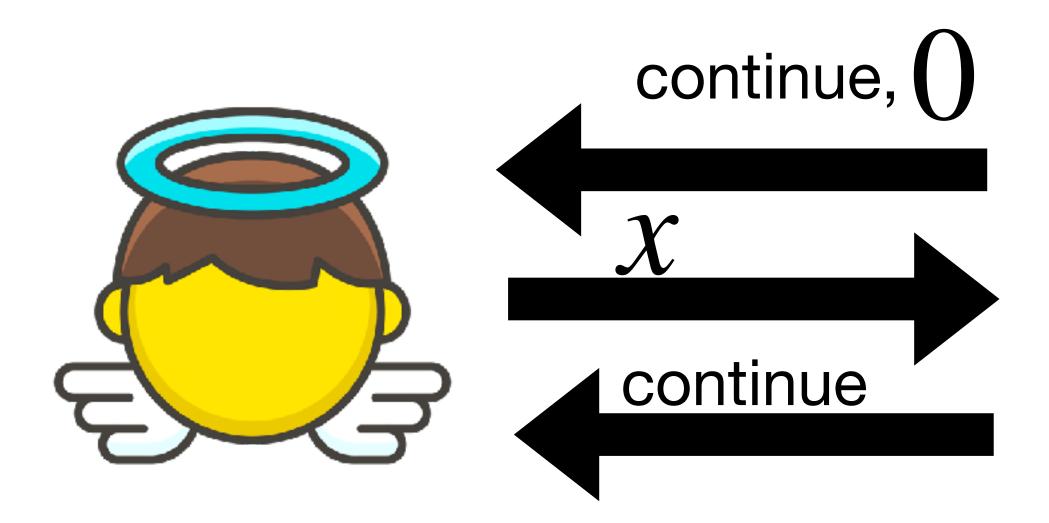


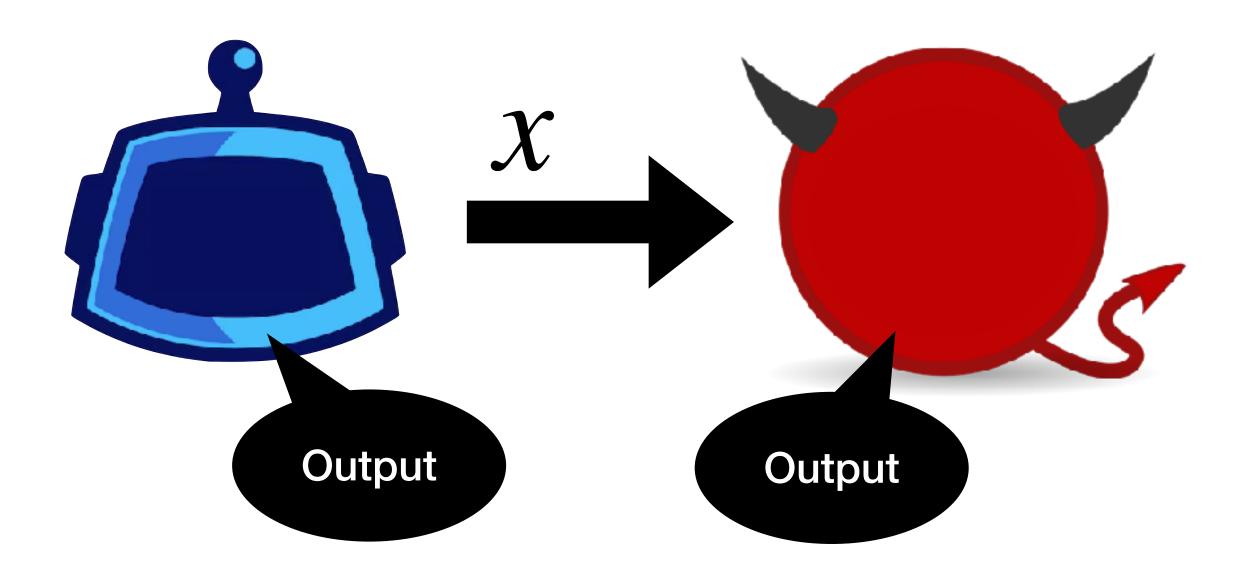




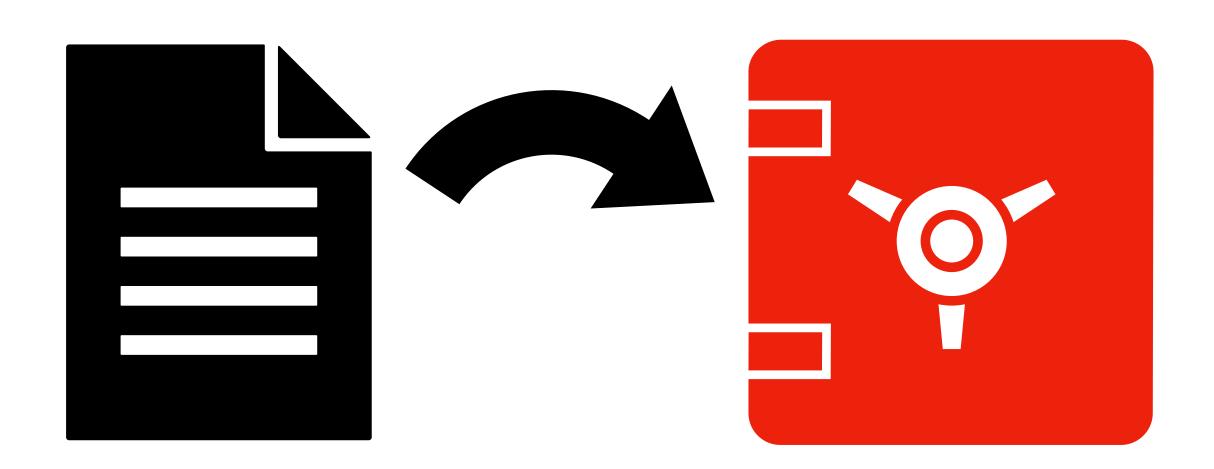






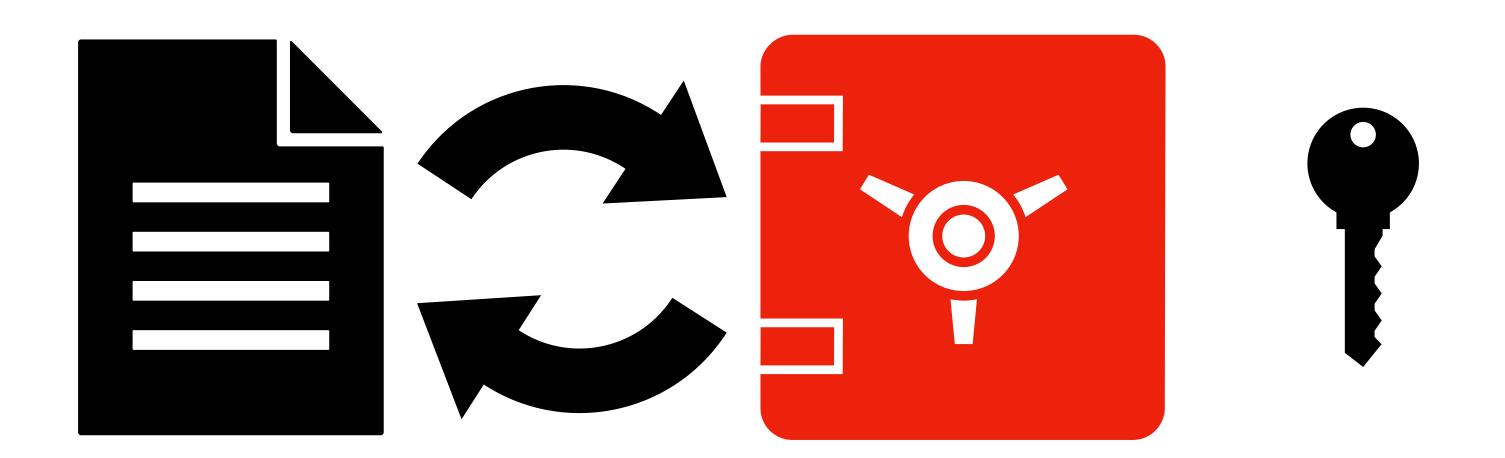


Commitments are digital analog of a lock box

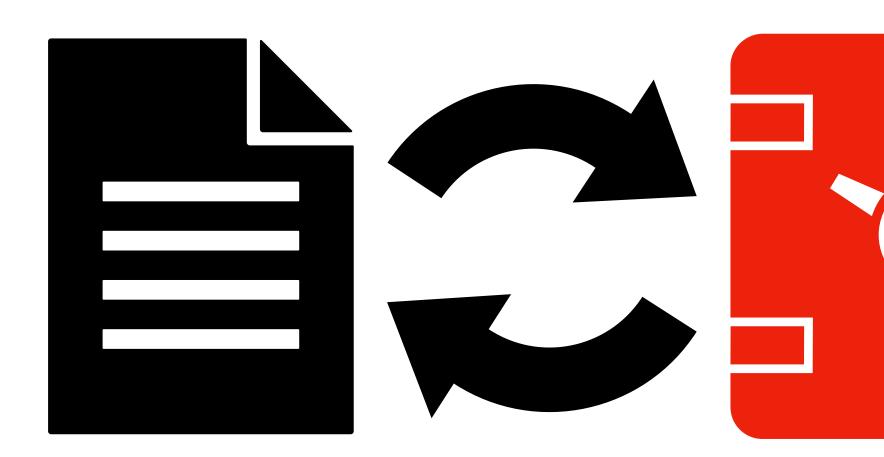


Commitments are digital analog of a lock box

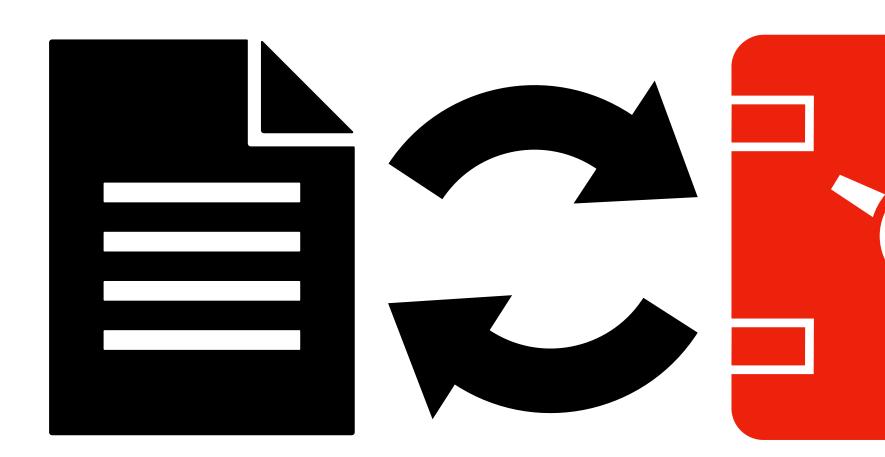
I can put a message in the lock box and then give it to you



- Commitments are digital analog of a lock box
- I can put a message in the lock box and then give it to you
 - I can send you a key, allowing you to open the lock box



I am confident you cannot open the box without the key



You are confident I cannot tamper with the content of the box Binding

am confident you cannot open the box without the key

 $\operatorname{com}(x;r)$

Commitment to *x* with randomness $r \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$

$\operatorname{com}(x;r)$

$\operatorname{com}(x;r) \approx \operatorname{com}(y;r)$

Commitment to *x* with randomness $r \leftarrow \{0,1\}^{\lambda}$

Computationally hiding

$\operatorname{com}(x;r)$

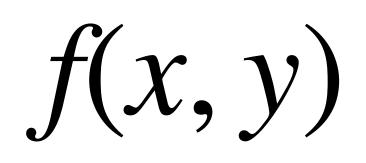
$\operatorname{com}(x;r) \approx \operatorname{com}(y;r)$

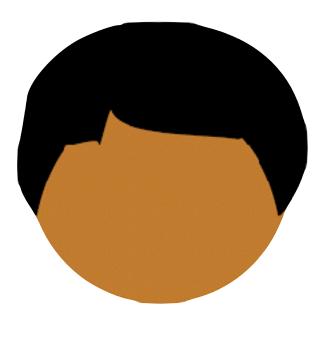
Commitment to *x* with randomness $r \leftarrow \{0,1\}^{\lambda}$

Computationally hiding

 $x \neq y \implies \mathscr{A}$ cannot find com(x; r) = com(y; r)

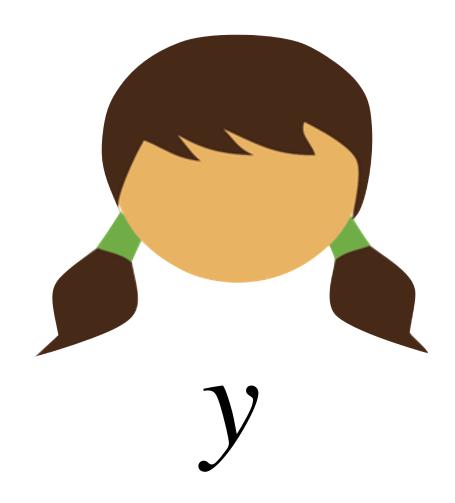
Perfectly Binding

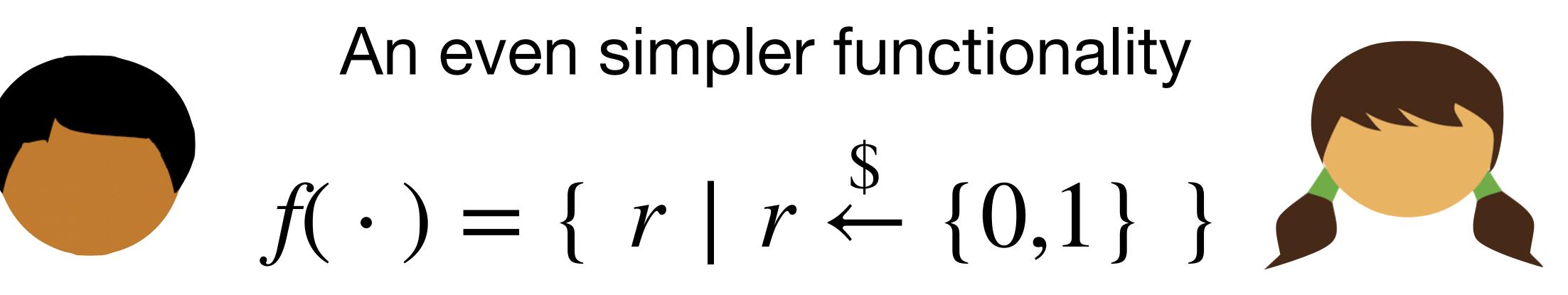


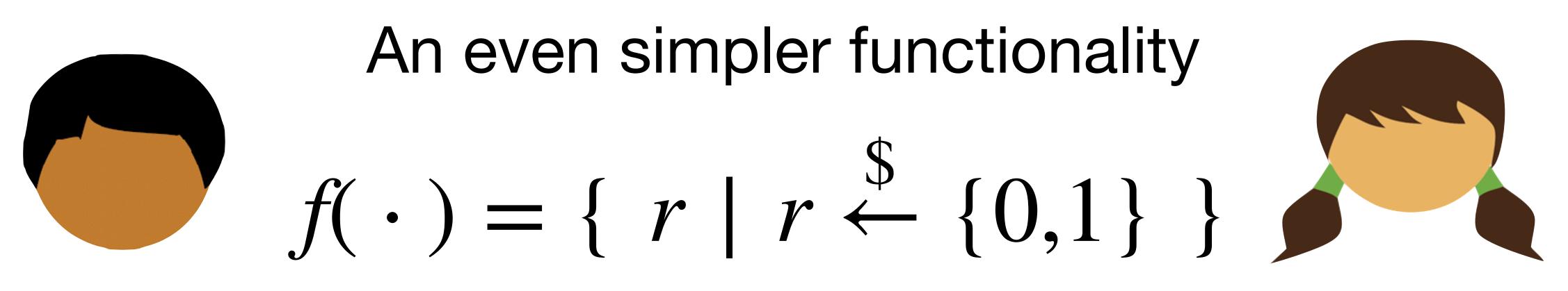


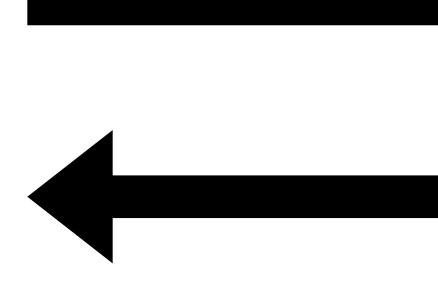
 $\boldsymbol{\mathcal{X}}$

$f(x, y) = x \oplus y$

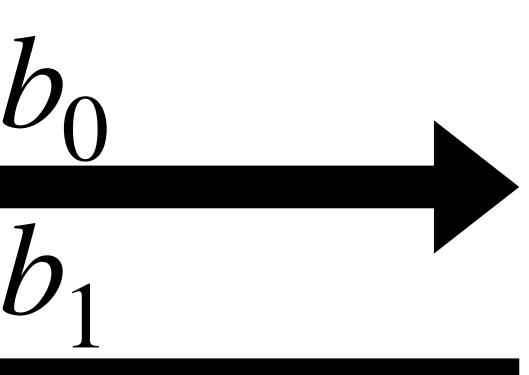




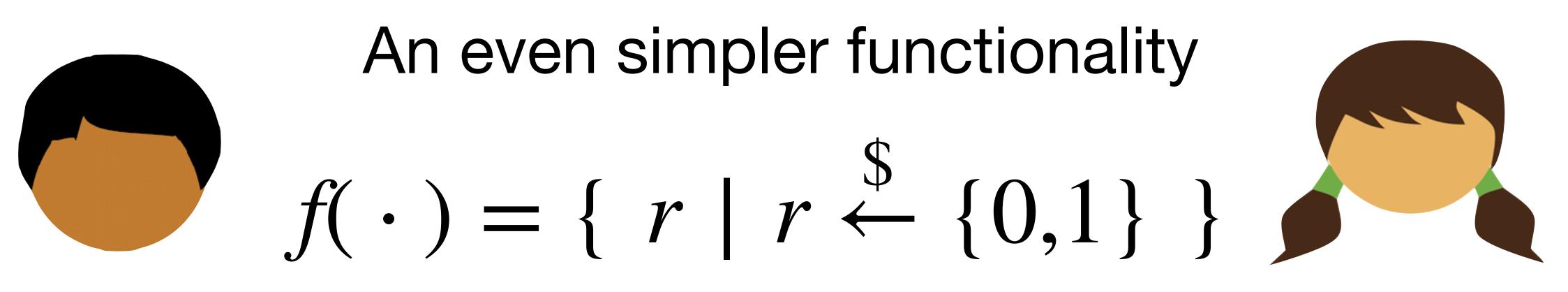


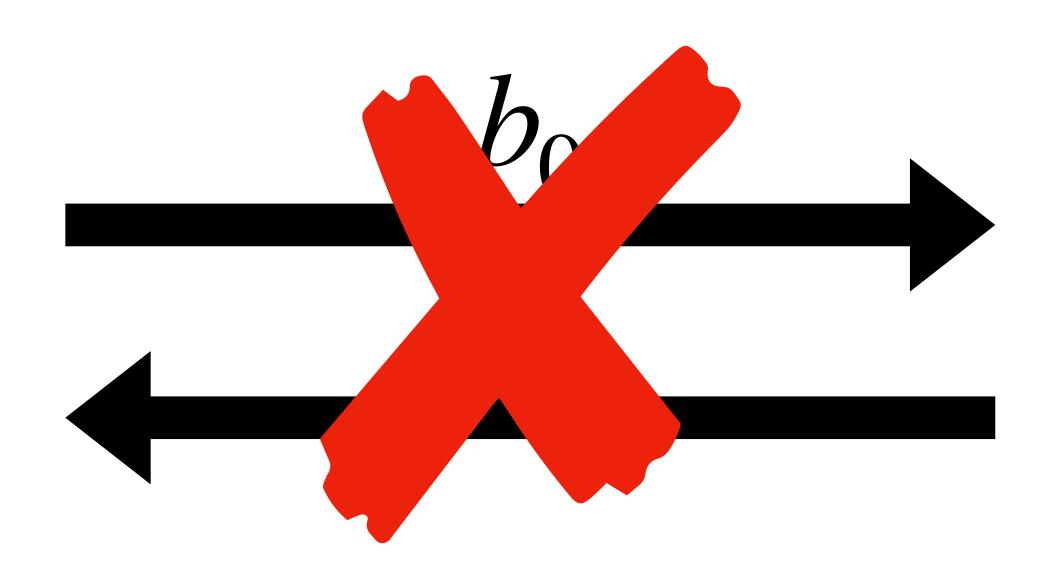


Attempt



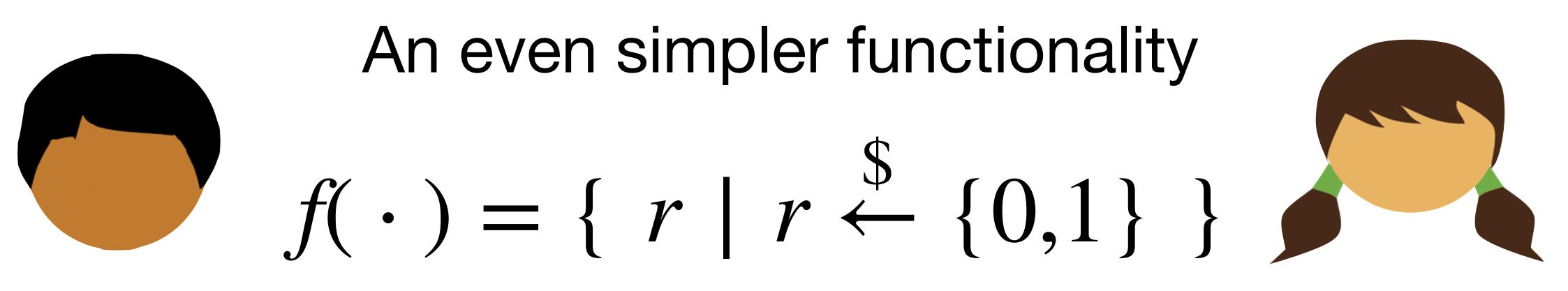
 $b_1 \stackrel{\$}{\leftarrow} \{0,1\}$

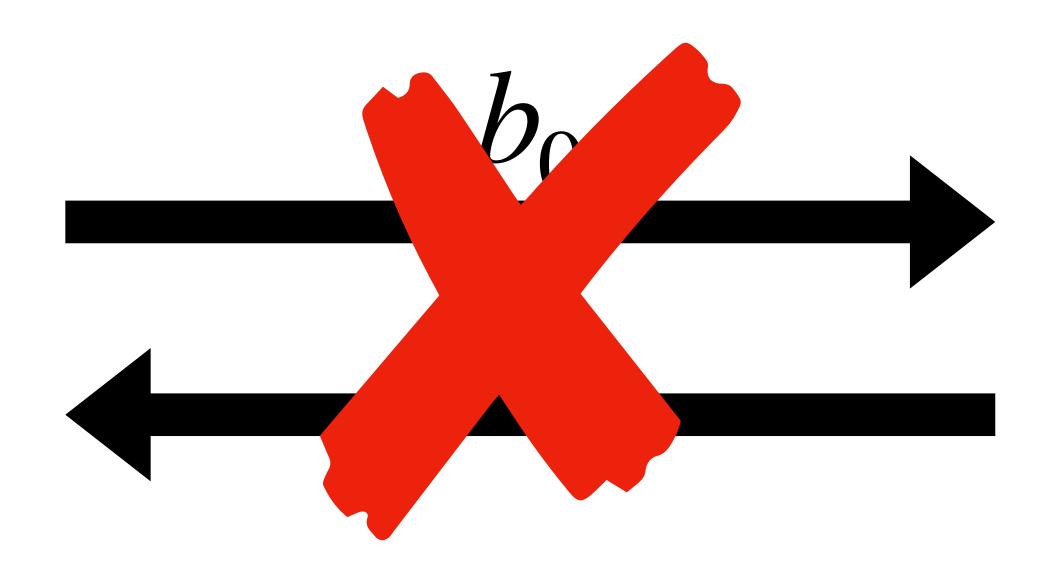




Attempt

 $b_1 \stackrel{\$}{\leftarrow} \{0,1\}$

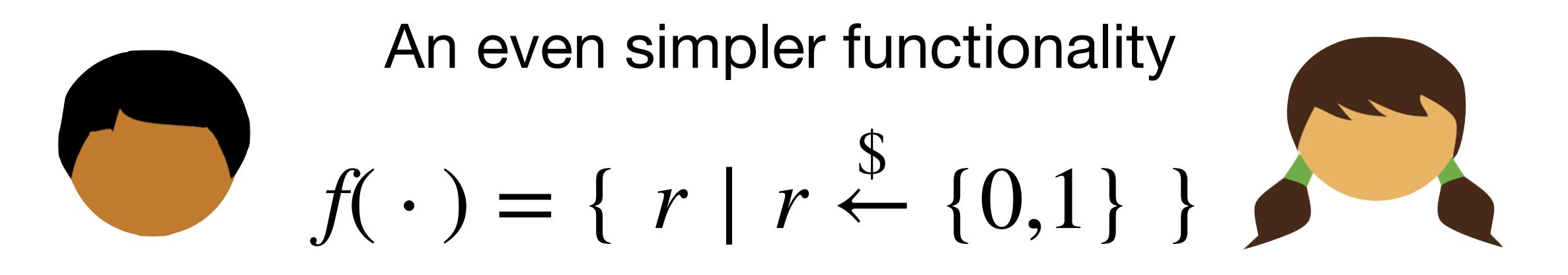


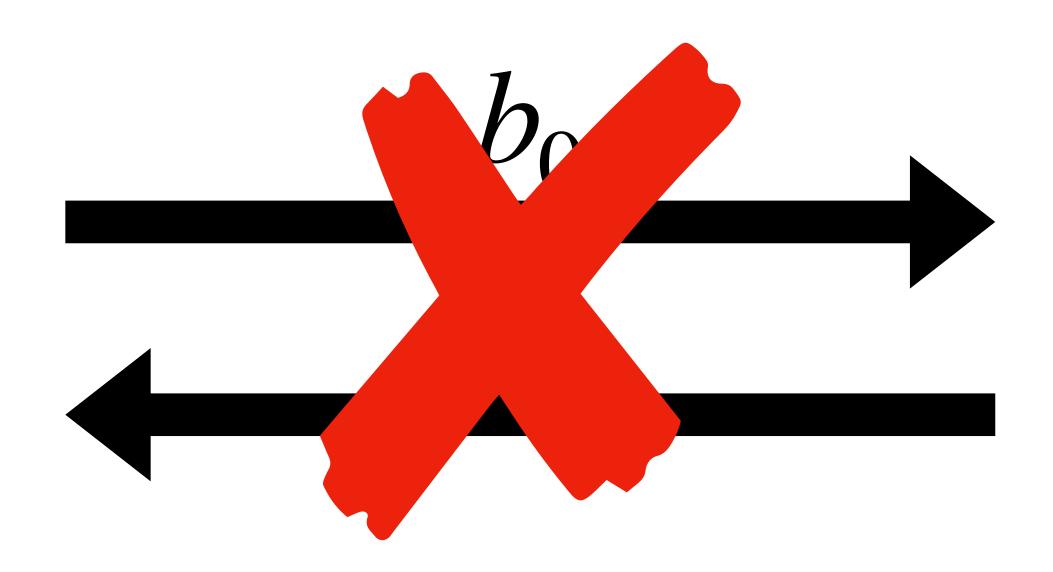


Attempt

$$b_1 \stackrel{\$}{\leftarrow} \{0,1\}$$

Can choose b_1
based on b_0



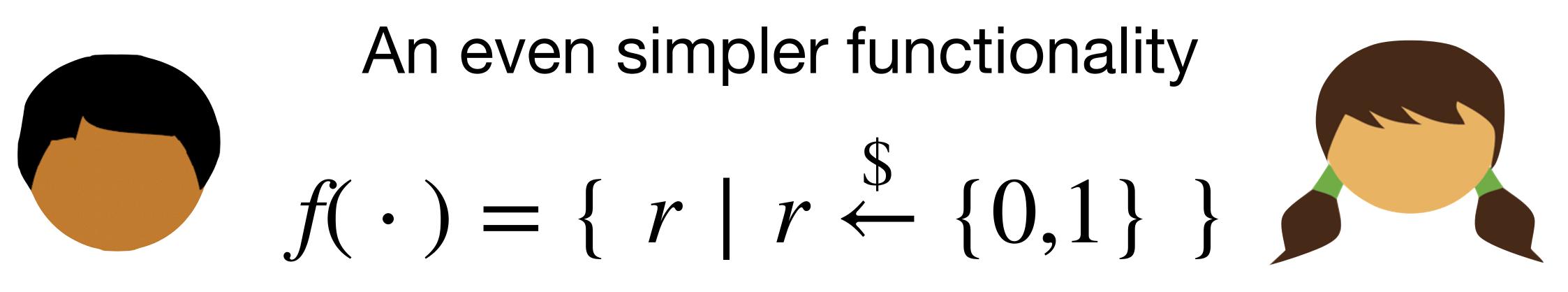


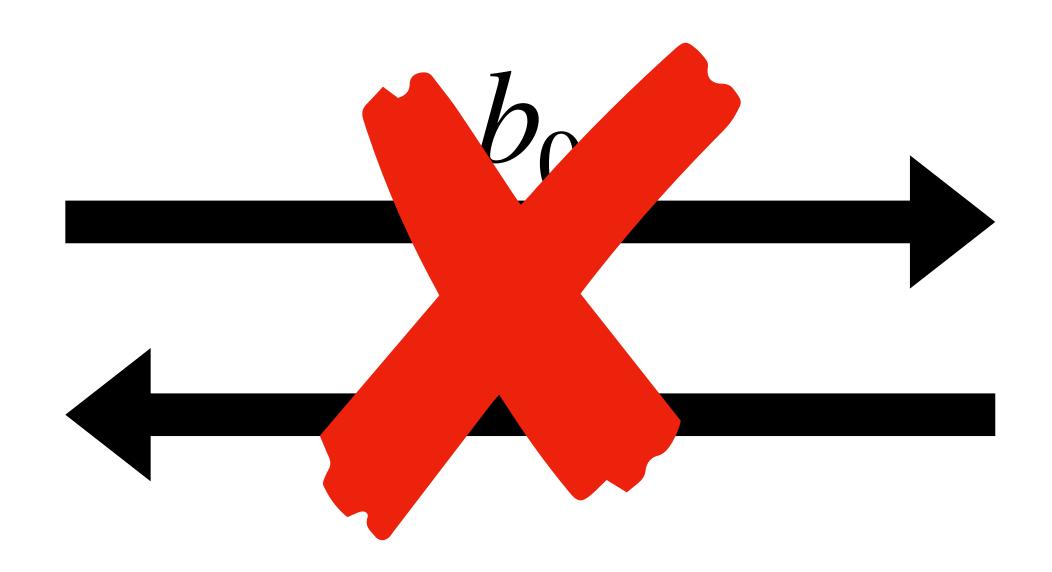
Attempt

$$b_1 \stackrel{\$}{\leftarrow} \{0,1\}$$

Can choose b_1 based on b_0

Could have Bob choose first, but this just lets Bob cheat





Attempt

$$b_1 \stackrel{\$}{\leftarrow} \{0,1\}$$

Can choose b_1 based on b_0

Use a commitment!

How To Simulate It – A Tutorial on the Simulation **Proof Technique**^{*}

One of the most fundamental notions of cryptography is that of simulation. It stands behind the concepts of semantic security, zero knowledge, and security for multiparty computation. However, writing a simulator and proving security via the use of simulation is a non-trivial task, and one that many newcomers to the field often find difficult. In this tutorial, we provide a guide to how to write simulators and prove security via the simulation paradigm. Although we have tried to make this tutorial as stand-alone as possible, we assume some familiarity with the notions of secure encryption, zero-knowledge, and secure computation.

Keywords: secure computation, the simulation technique, tutorial

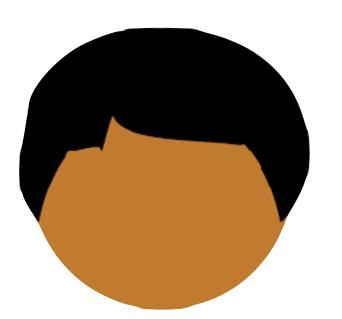
*This tutorial appeared in the book Tutorials on the Foundations of Cryptography, published in honor of Oded Goldreich's 60th birthday.

Yehuda Lindell

Dept. of Computer Science Bar-Ilan University, ISRAEL lindell@biu.ac.il

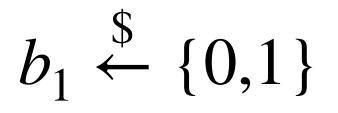
April 25, 2021

Abstract

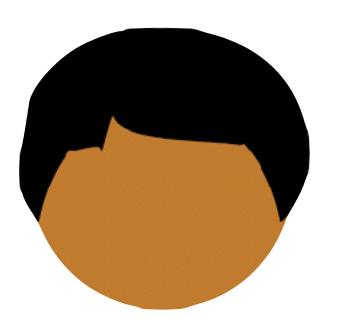


 $b_0 \stackrel{\$}{\leftarrow} \{0,1\}$ $r \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$

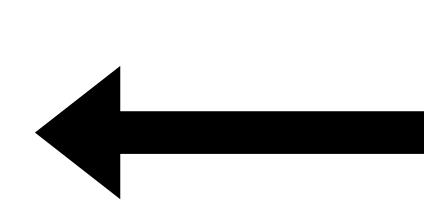
$f(\cdot) = \{ r \mid r \stackrel{\$}{\leftarrow} \{0,1\} \}$



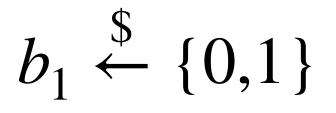
$c = \operatorname{Com}(b_0; r)$



 $b_0 \stackrel{\$}{\leftarrow} \{0,1\}$ $r \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$

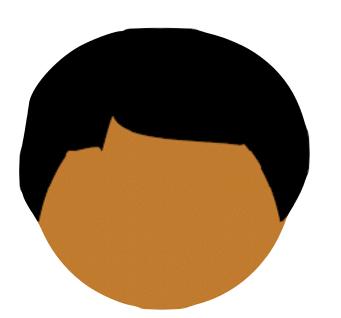


$f(\cdot) = \{ r \mid r \stackrel{\$}{\leftarrow} \{0,1\} \}$

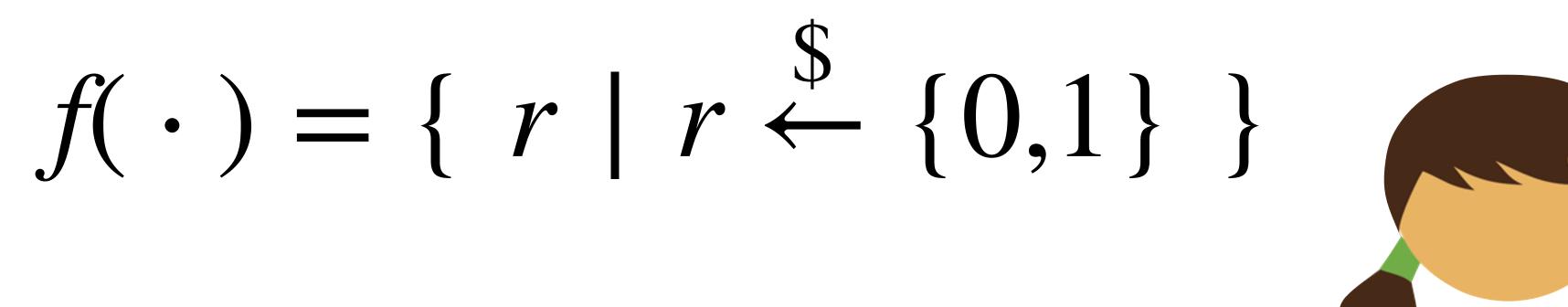


$c = \operatorname{Com}(b_0; r)$

 b_1



$b_0 \stackrel{\$}{\leftarrow} \{0,1\}$ $r \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$



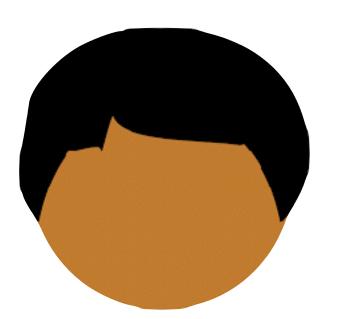
$b_1 \stackrel{\$}{\leftarrow} \{0,1\}$

$c = \operatorname{Com}(b_0; r)$

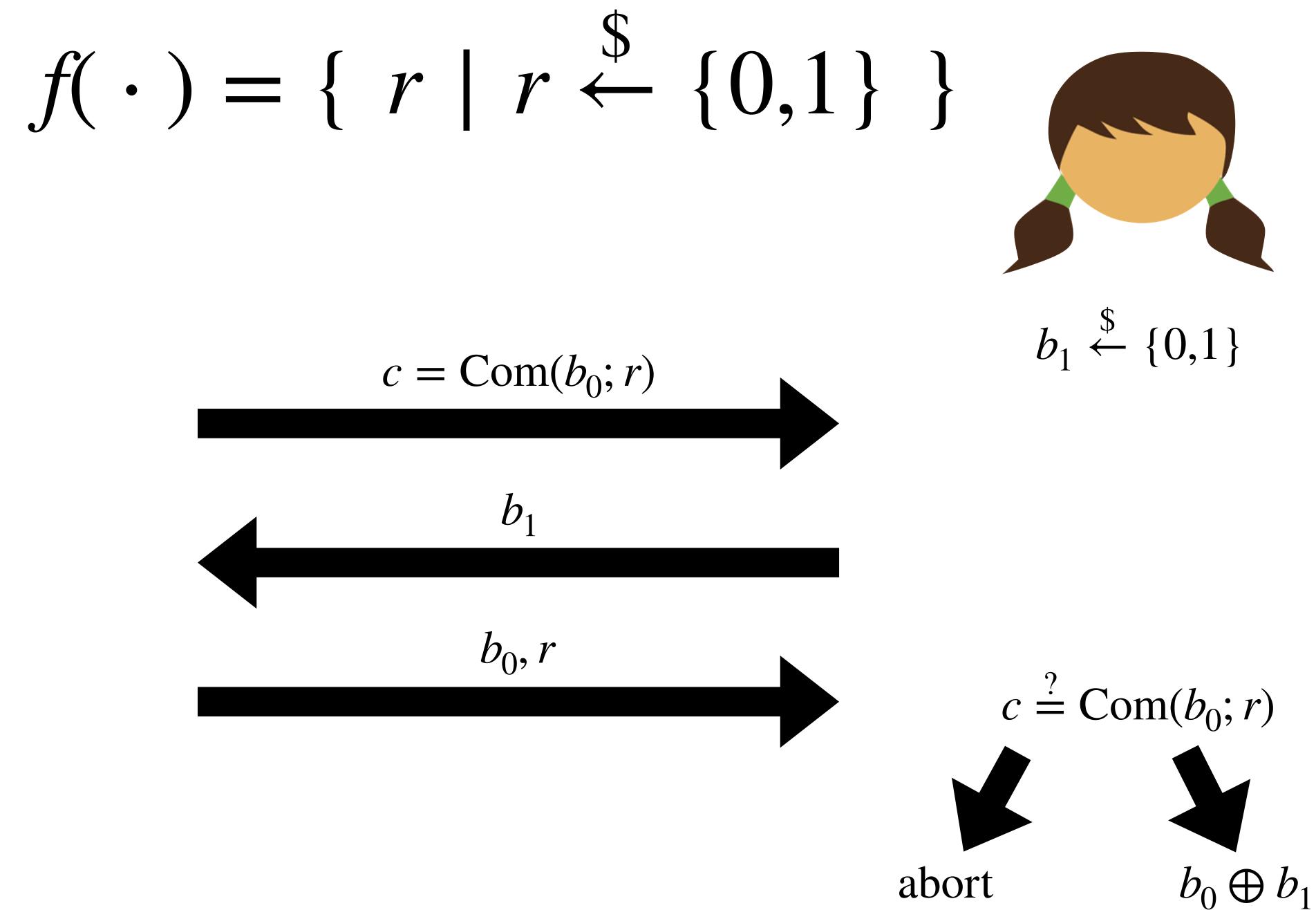
 b_1

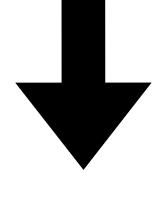
 b_0, r

 $c \stackrel{?}{=} \operatorname{Com}(b_0; r)$

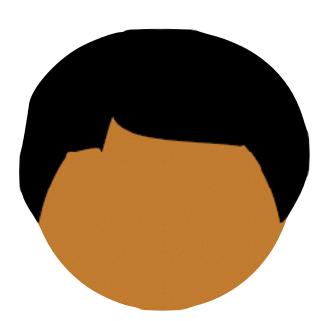


 $b_0 \stackrel{\$}{\leftarrow} \{0,1\}$ $r \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$

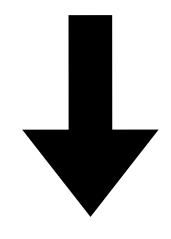




 $b_0 \oplus b_1$

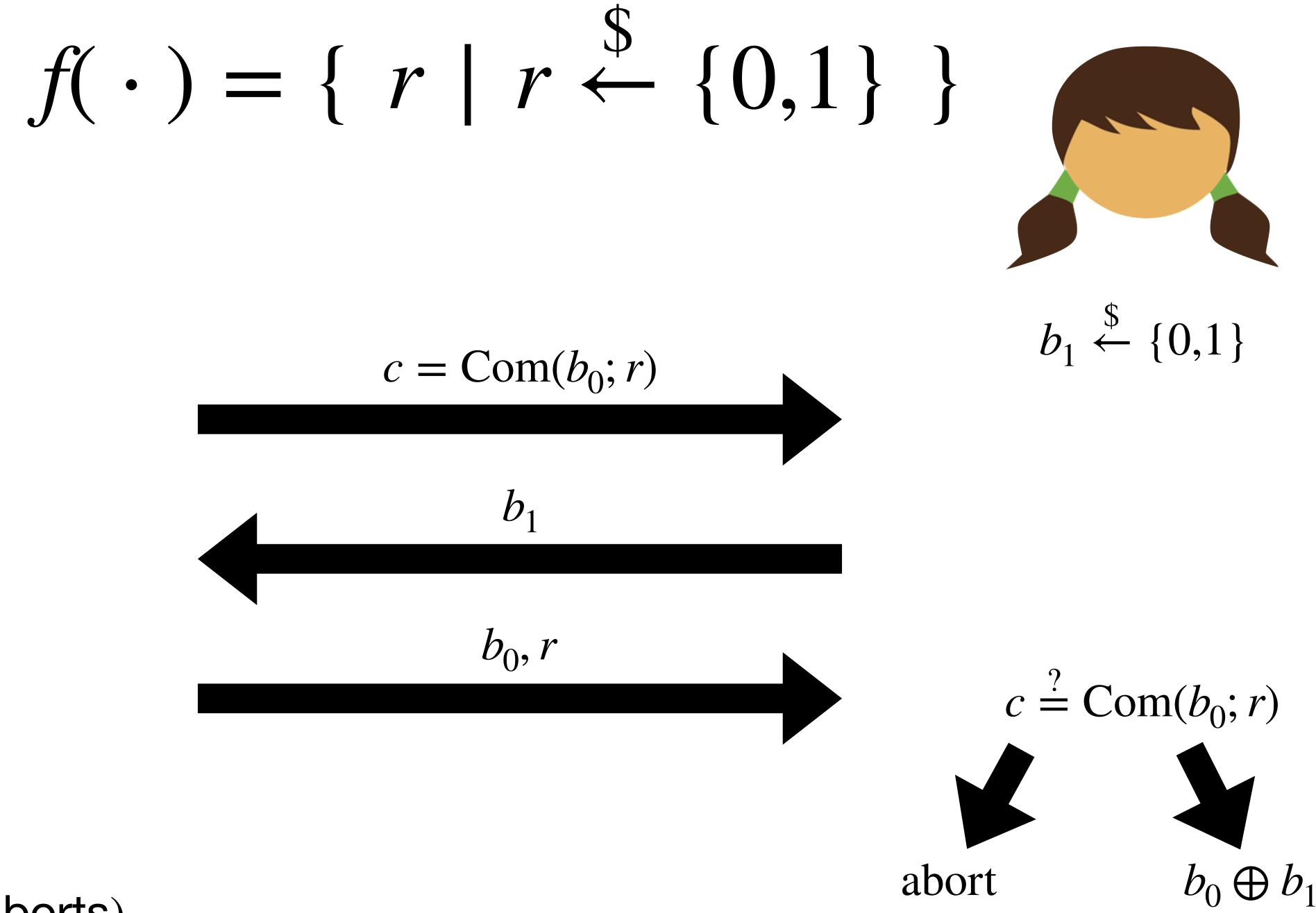


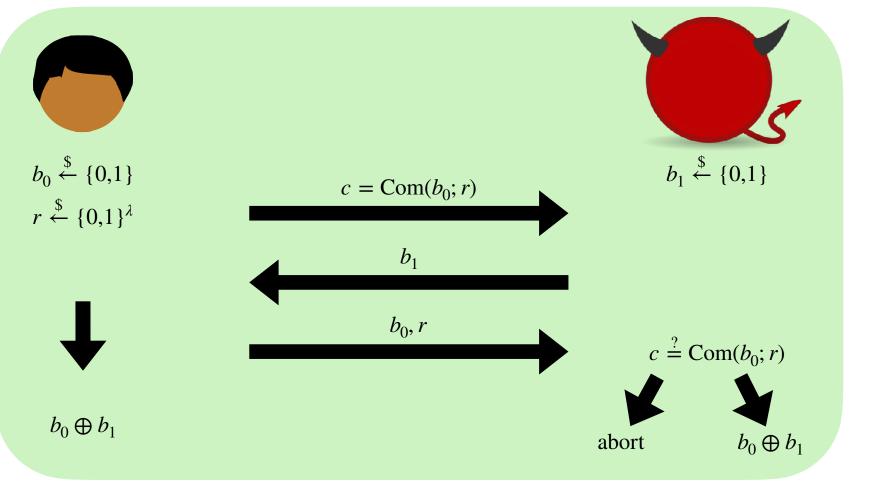
 $b_0 \stackrel{\$}{\leftarrow} \{0,1\}$ $r \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$

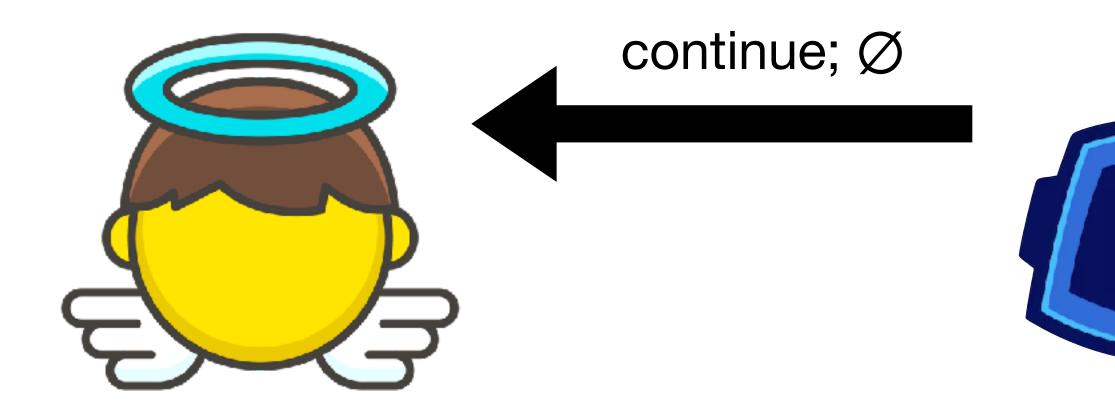


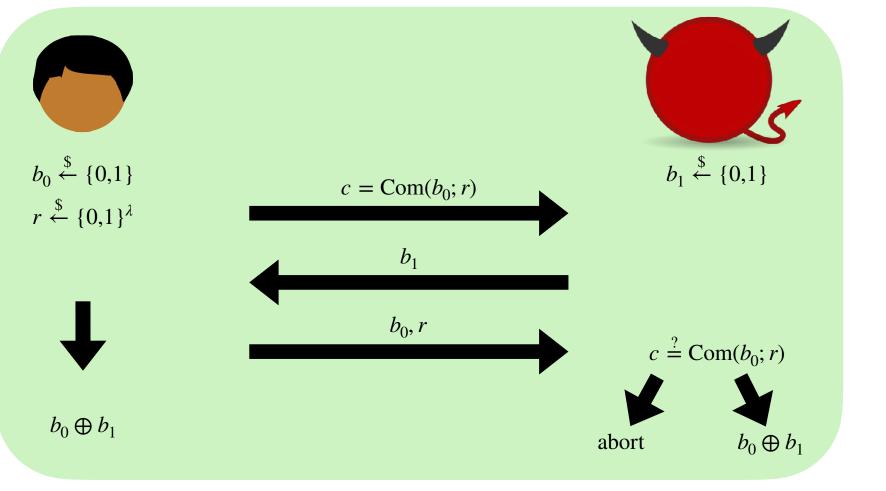
$b_0 \oplus b_1$

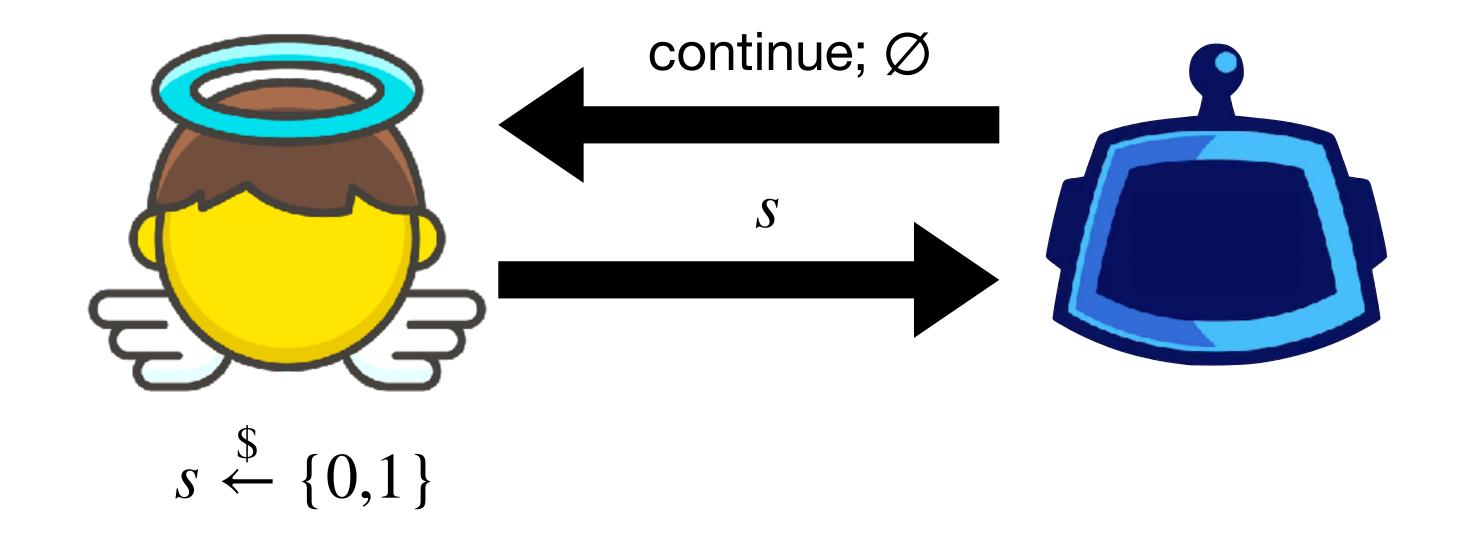
 $(b_1 = 0 \text{ if Alice aborts})$

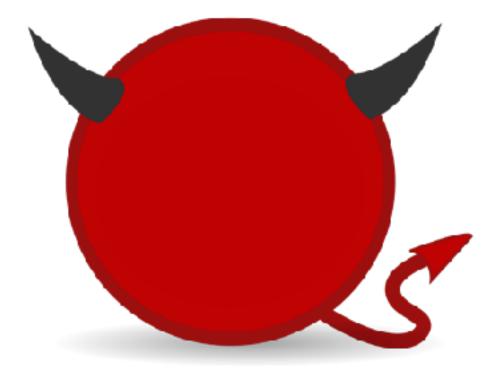


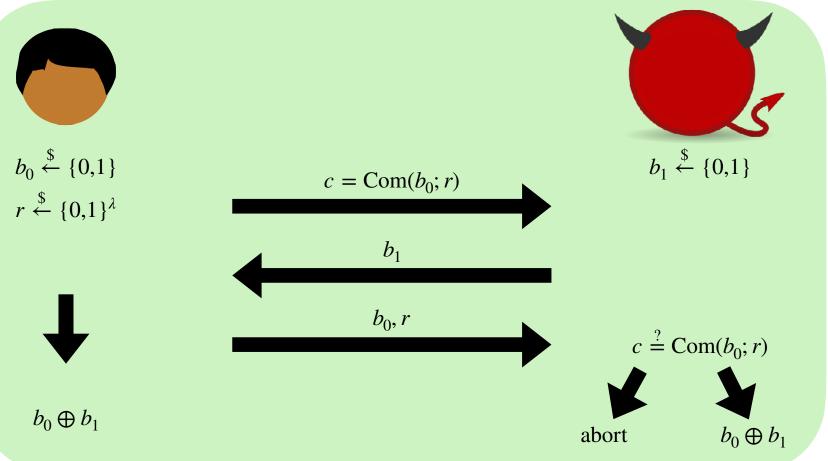


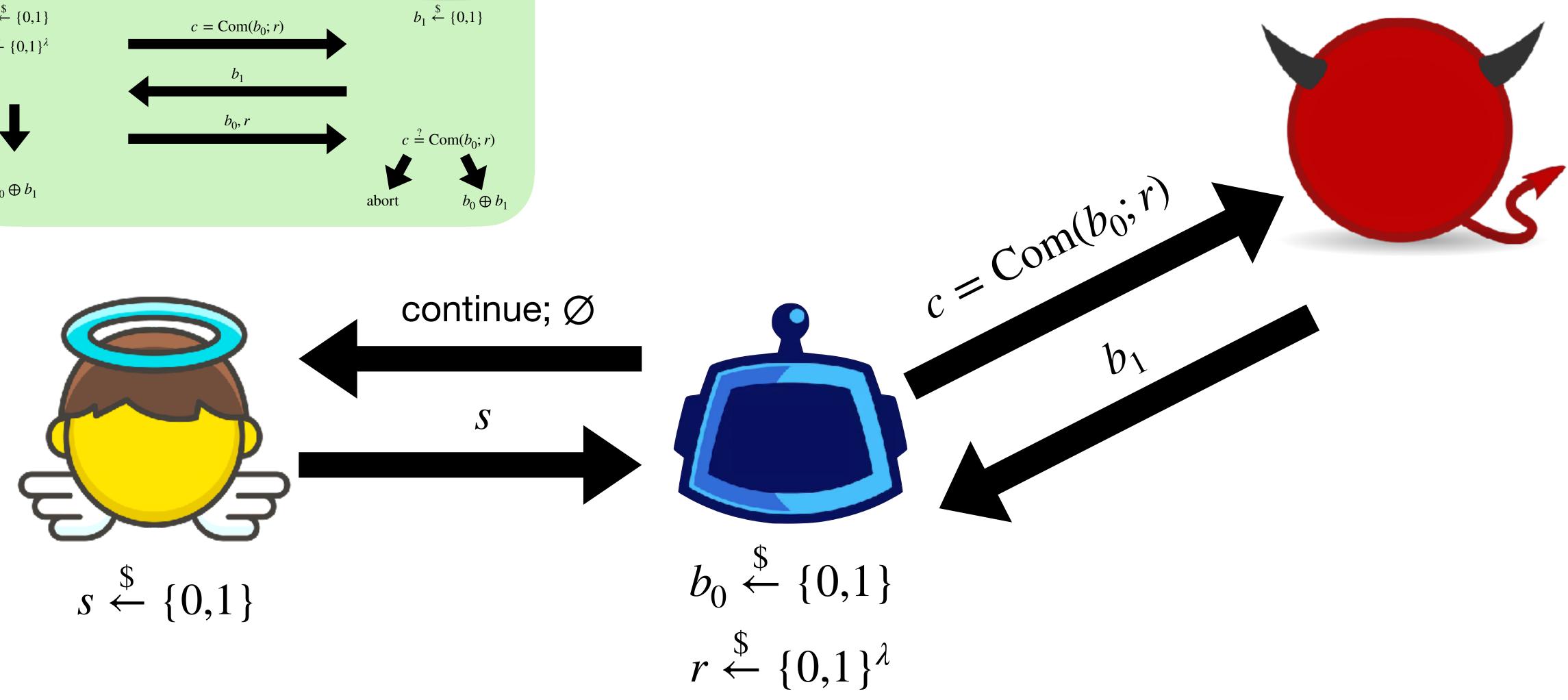


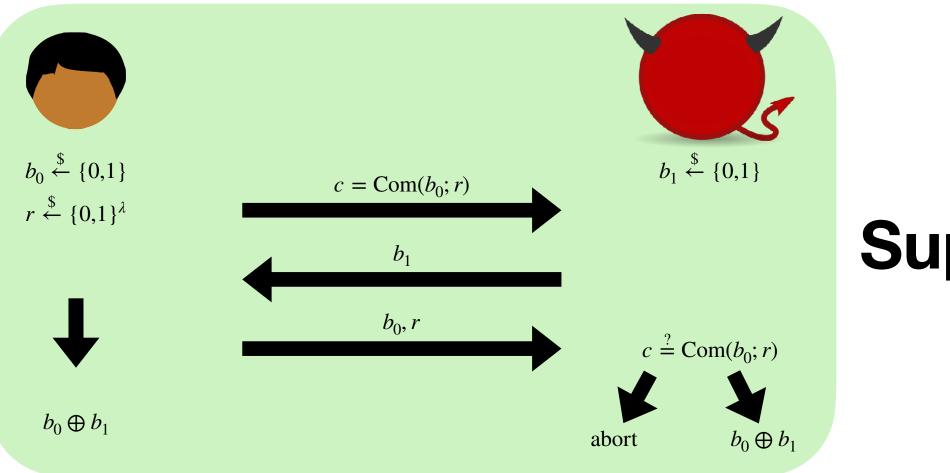


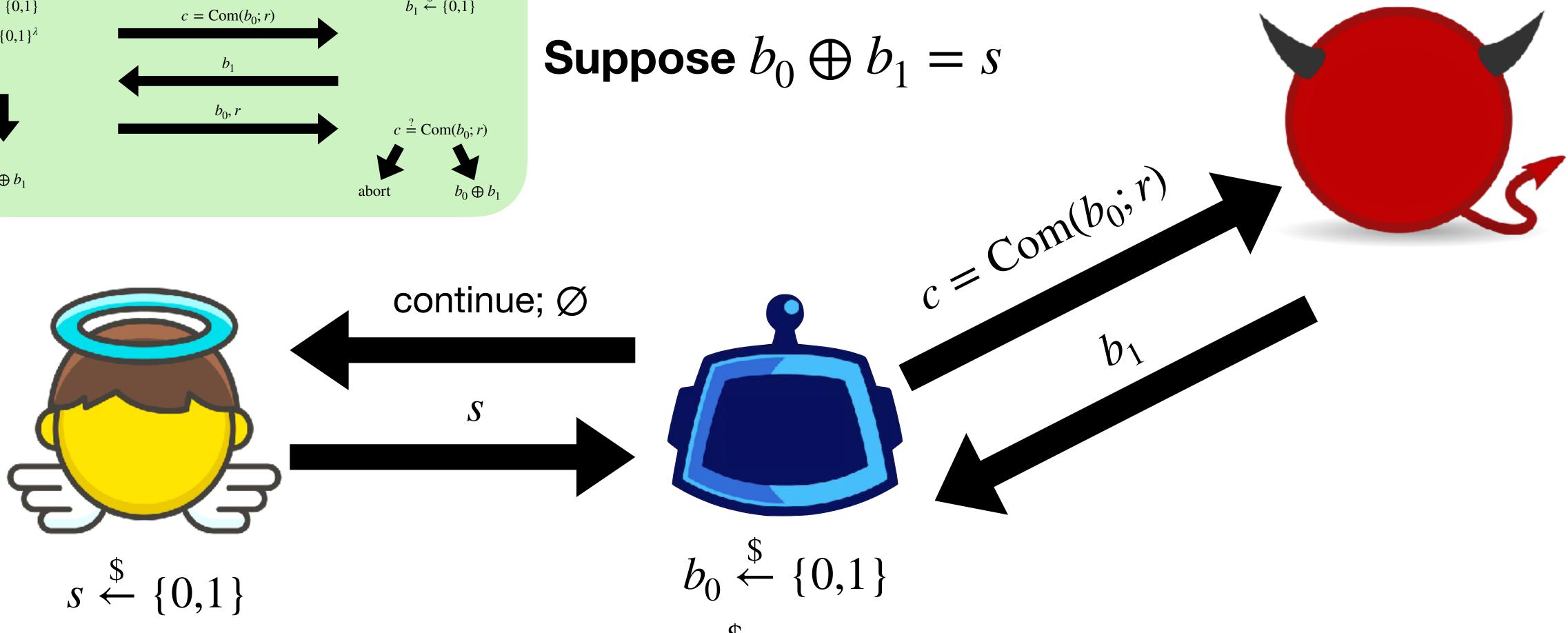




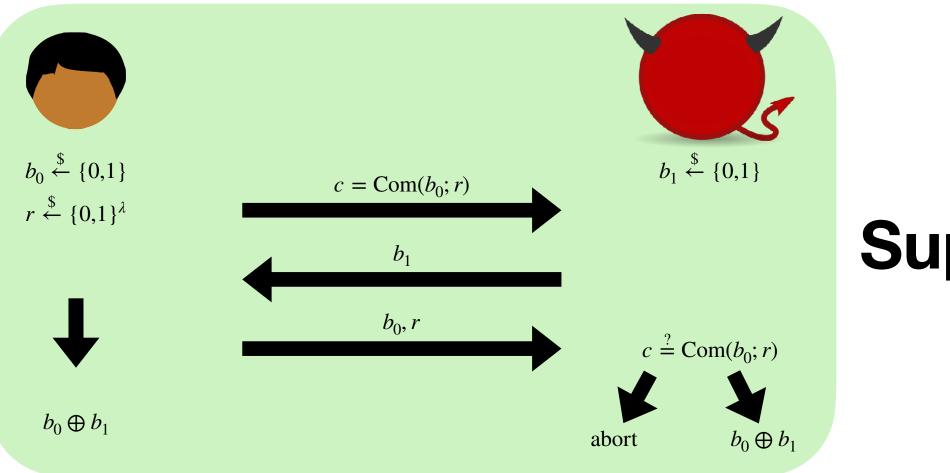


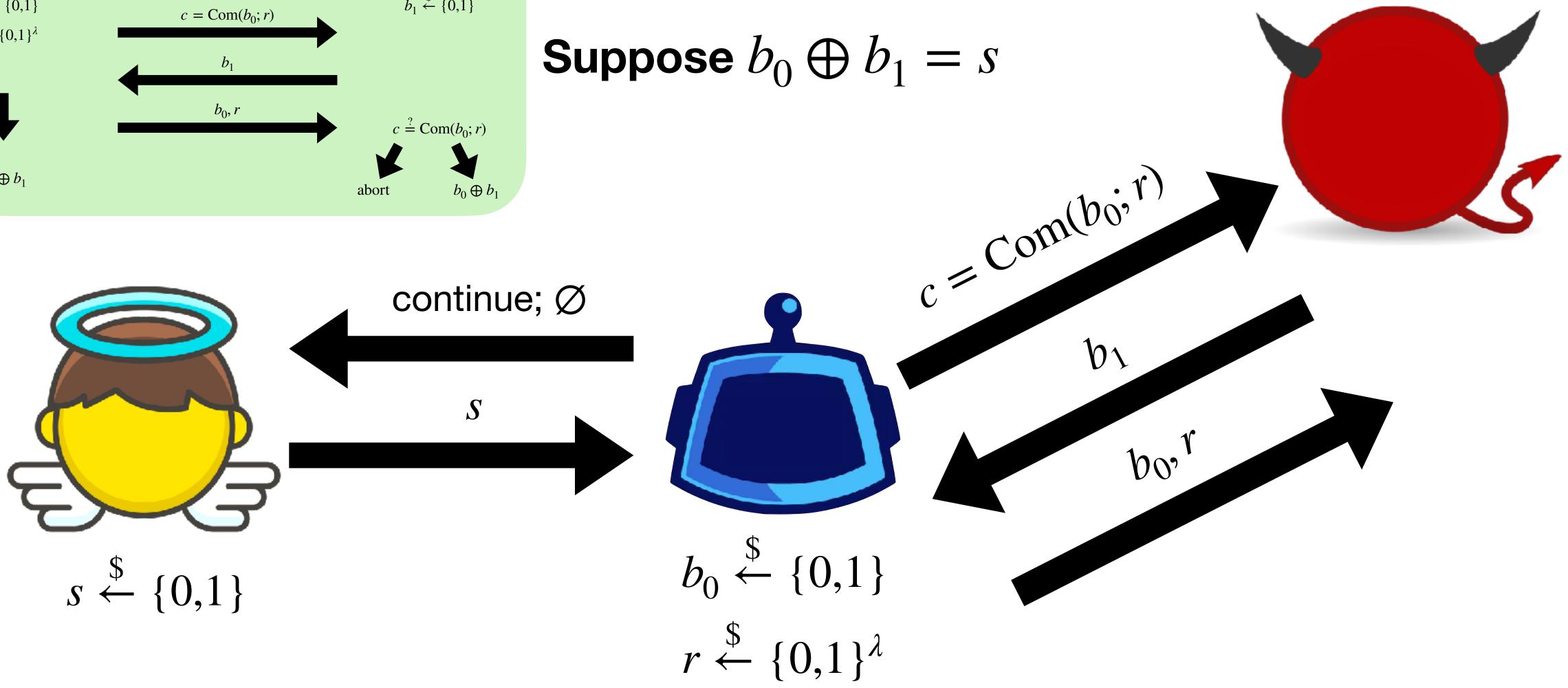


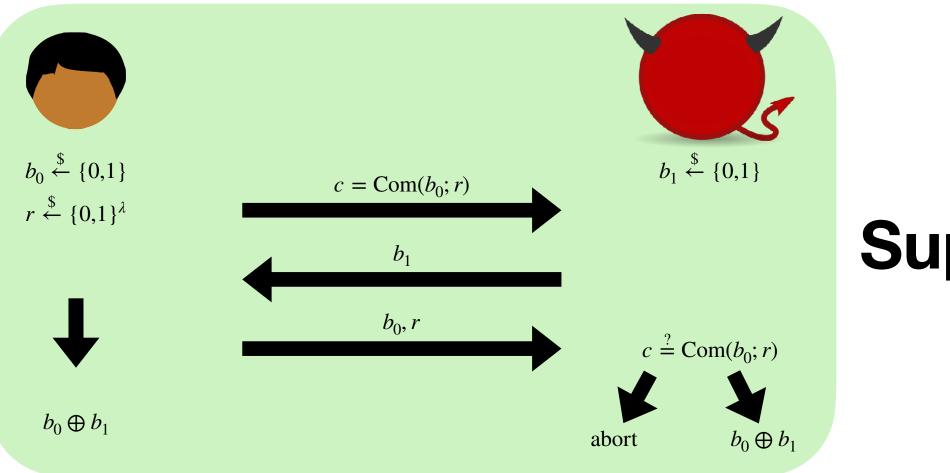


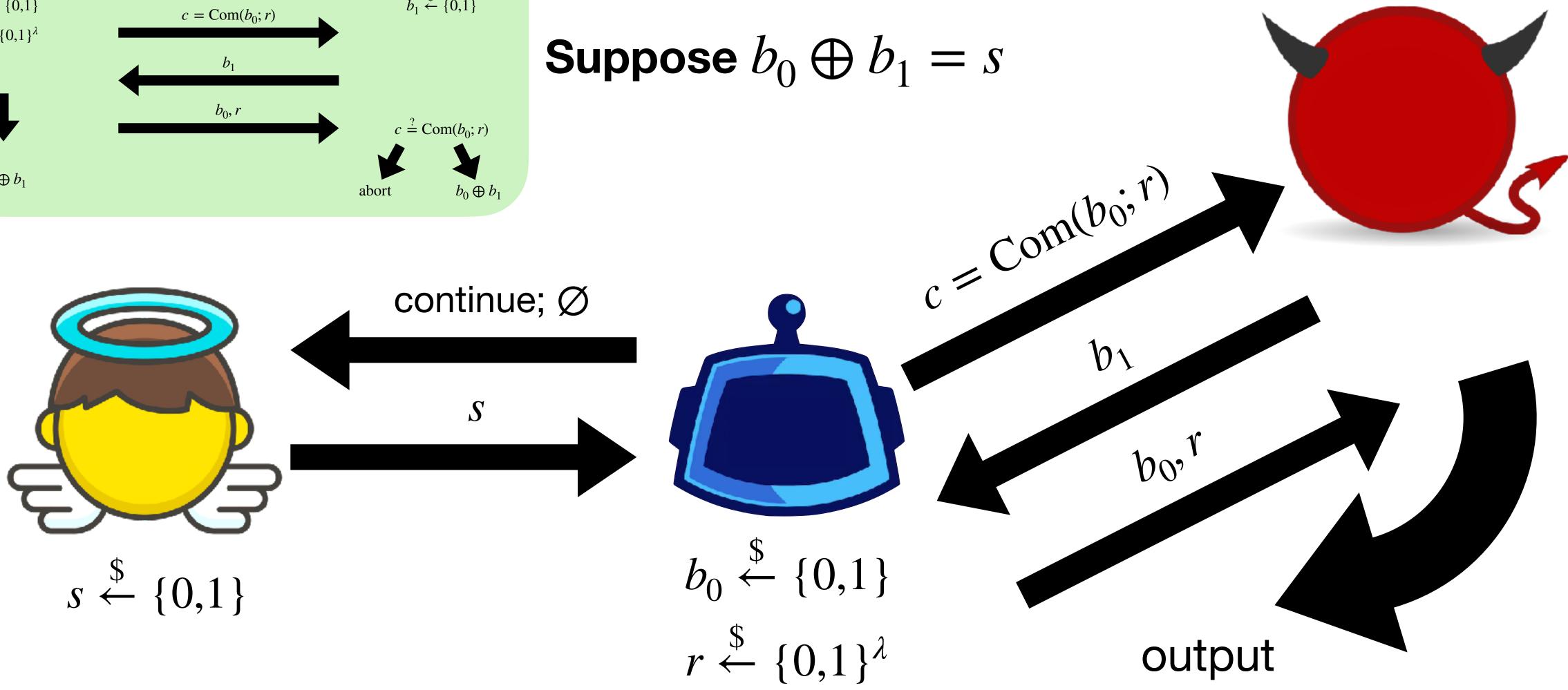


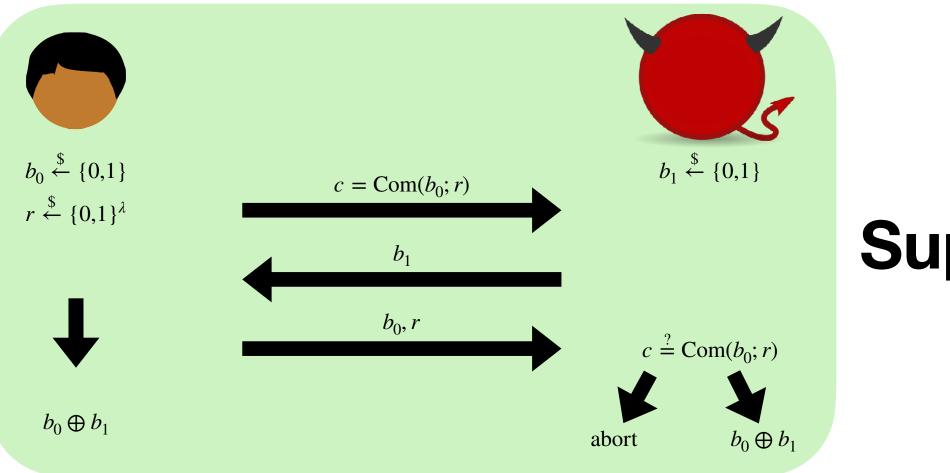
 $r \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$

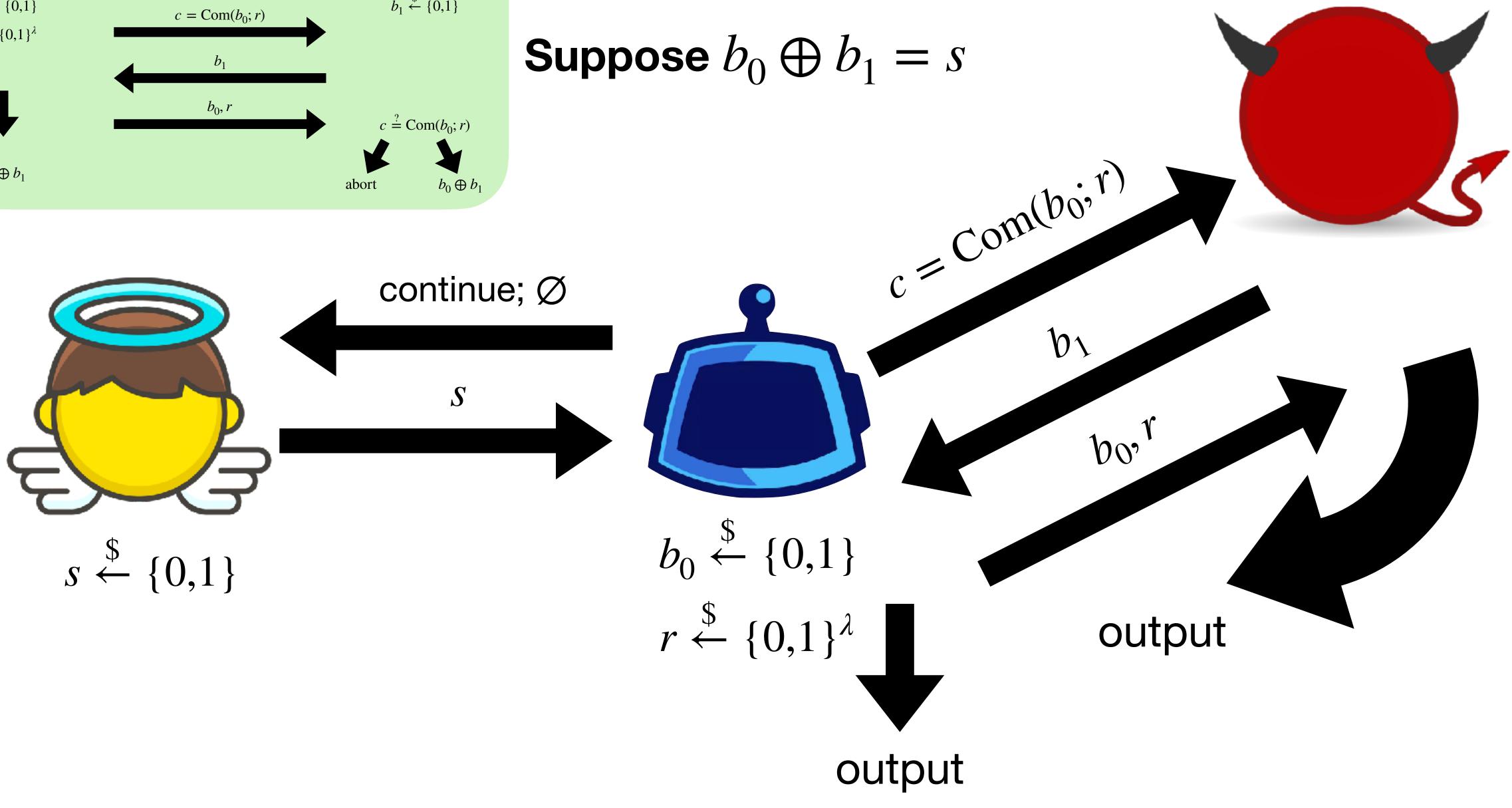


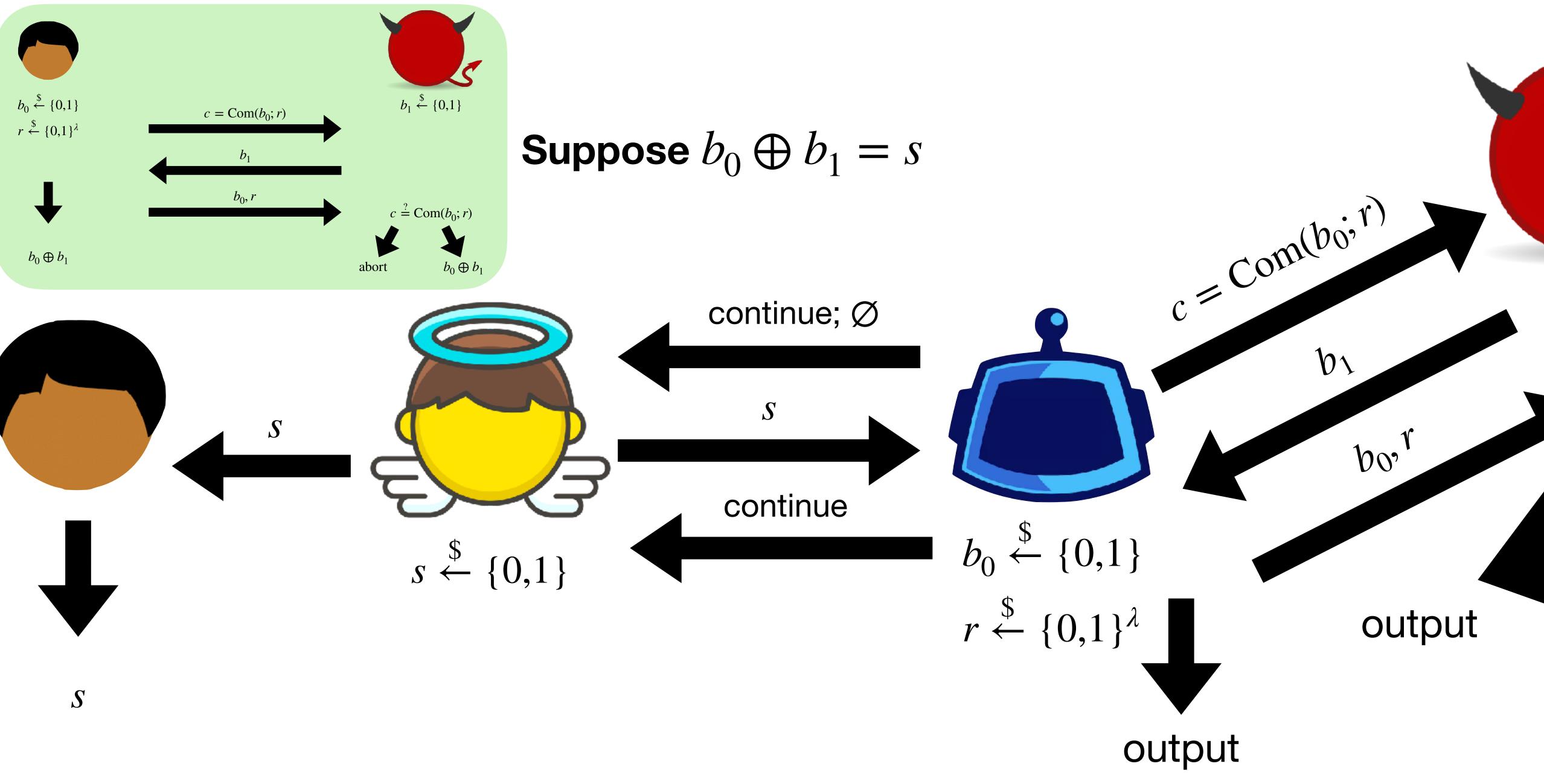


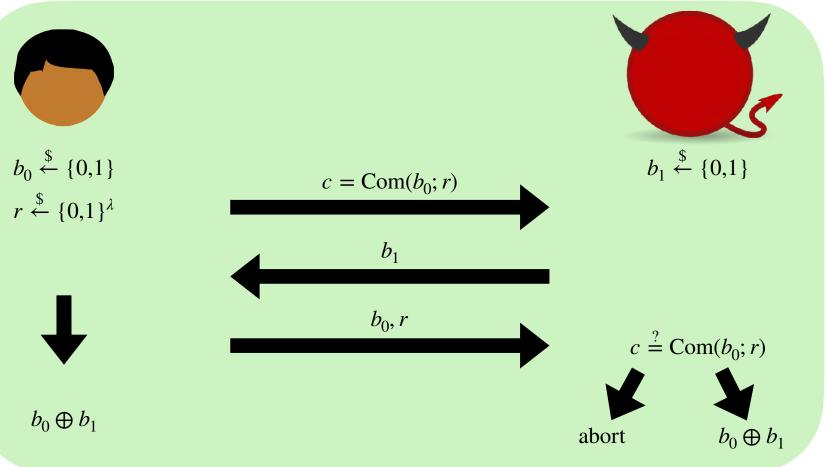


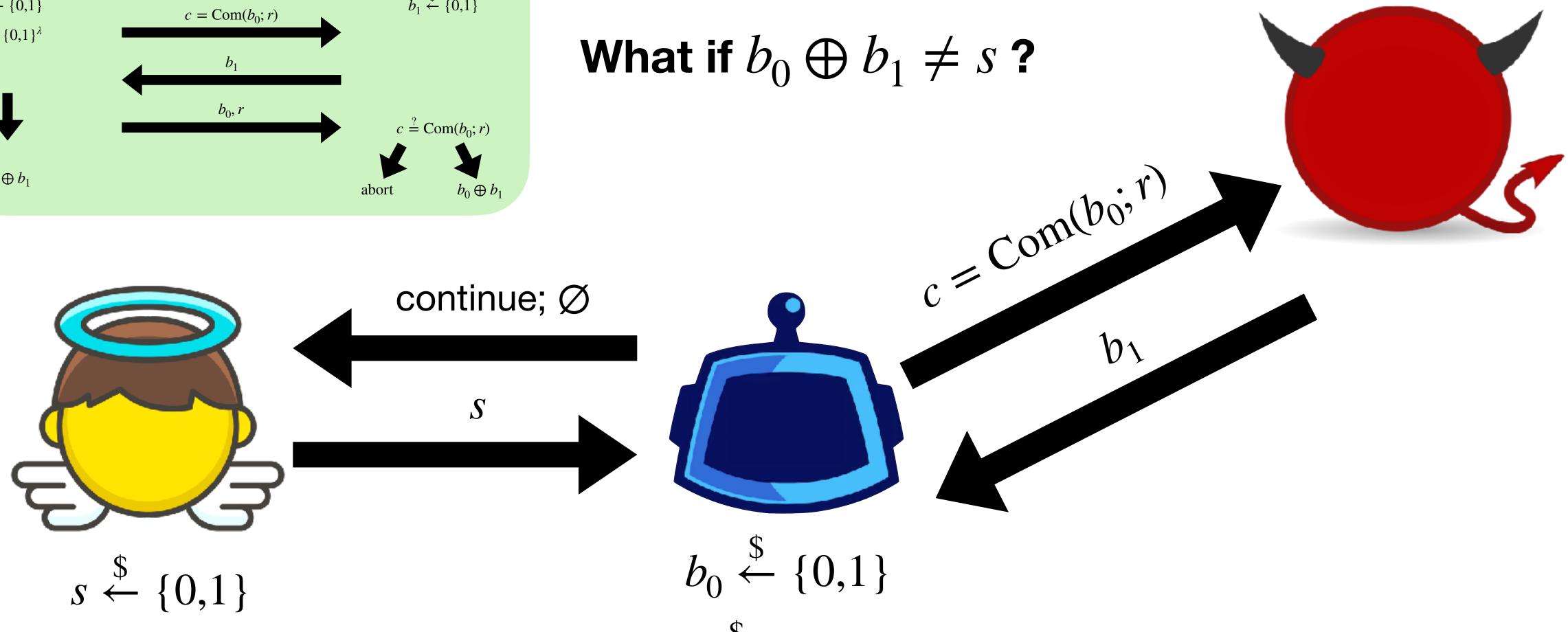




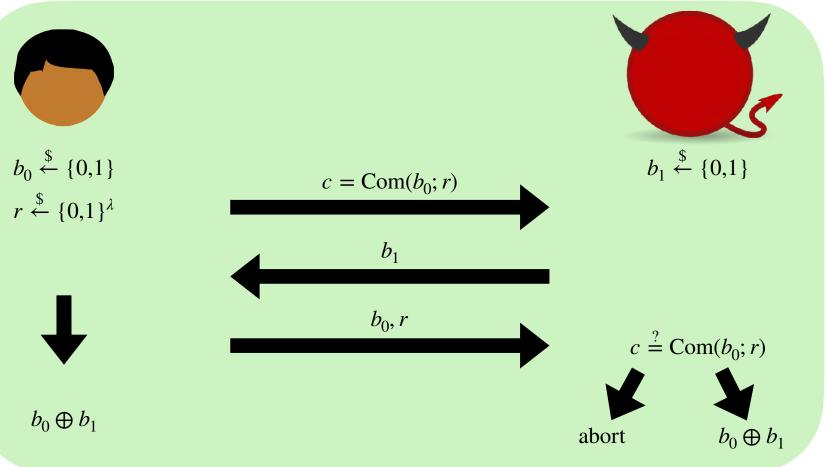


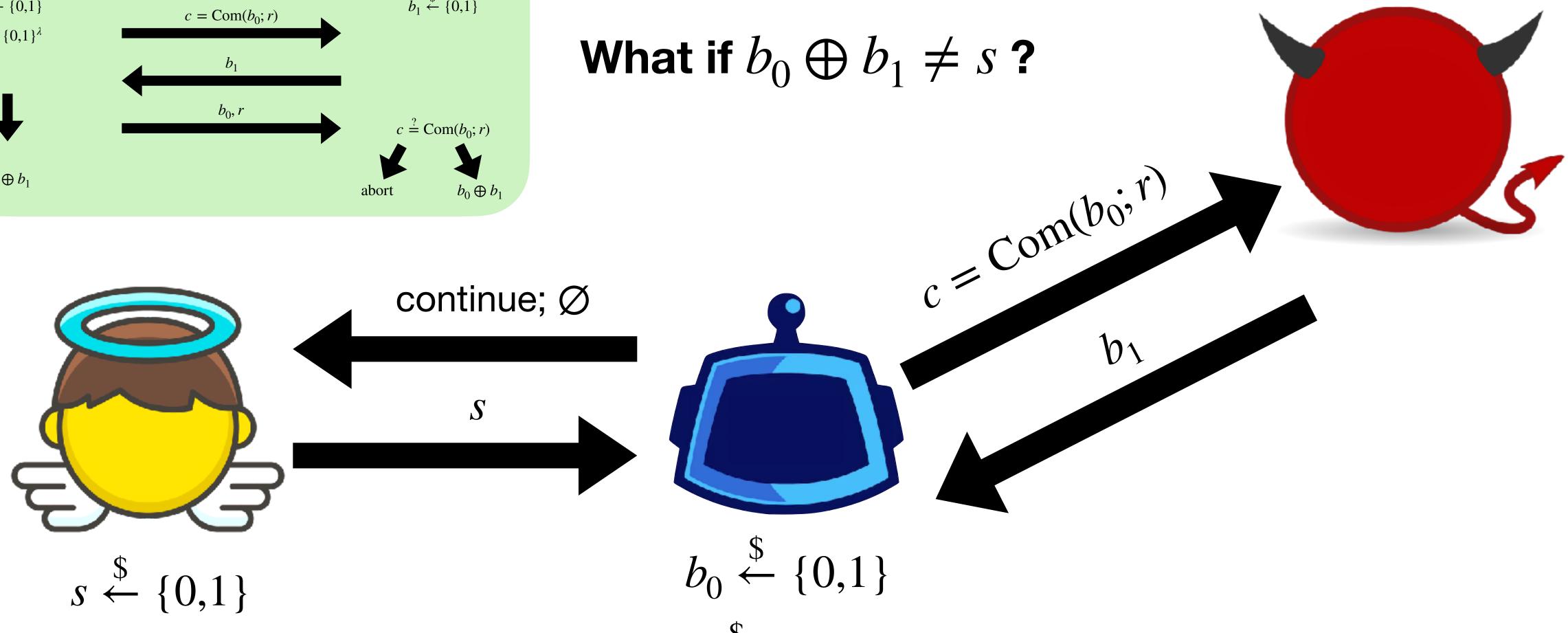




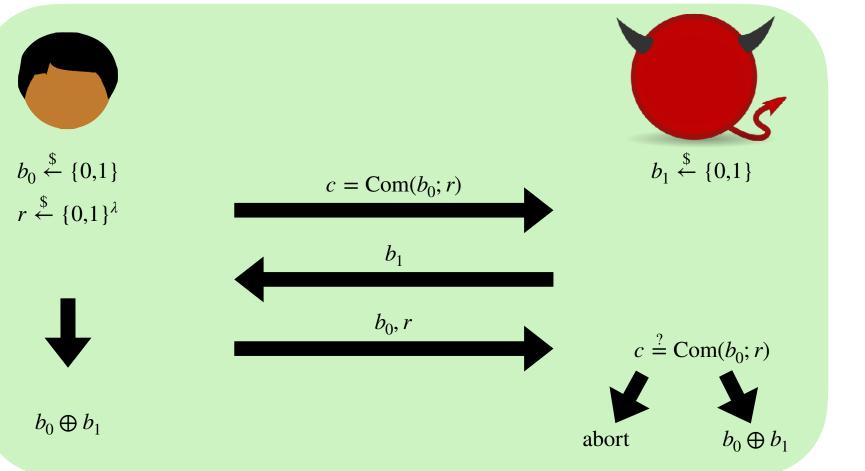


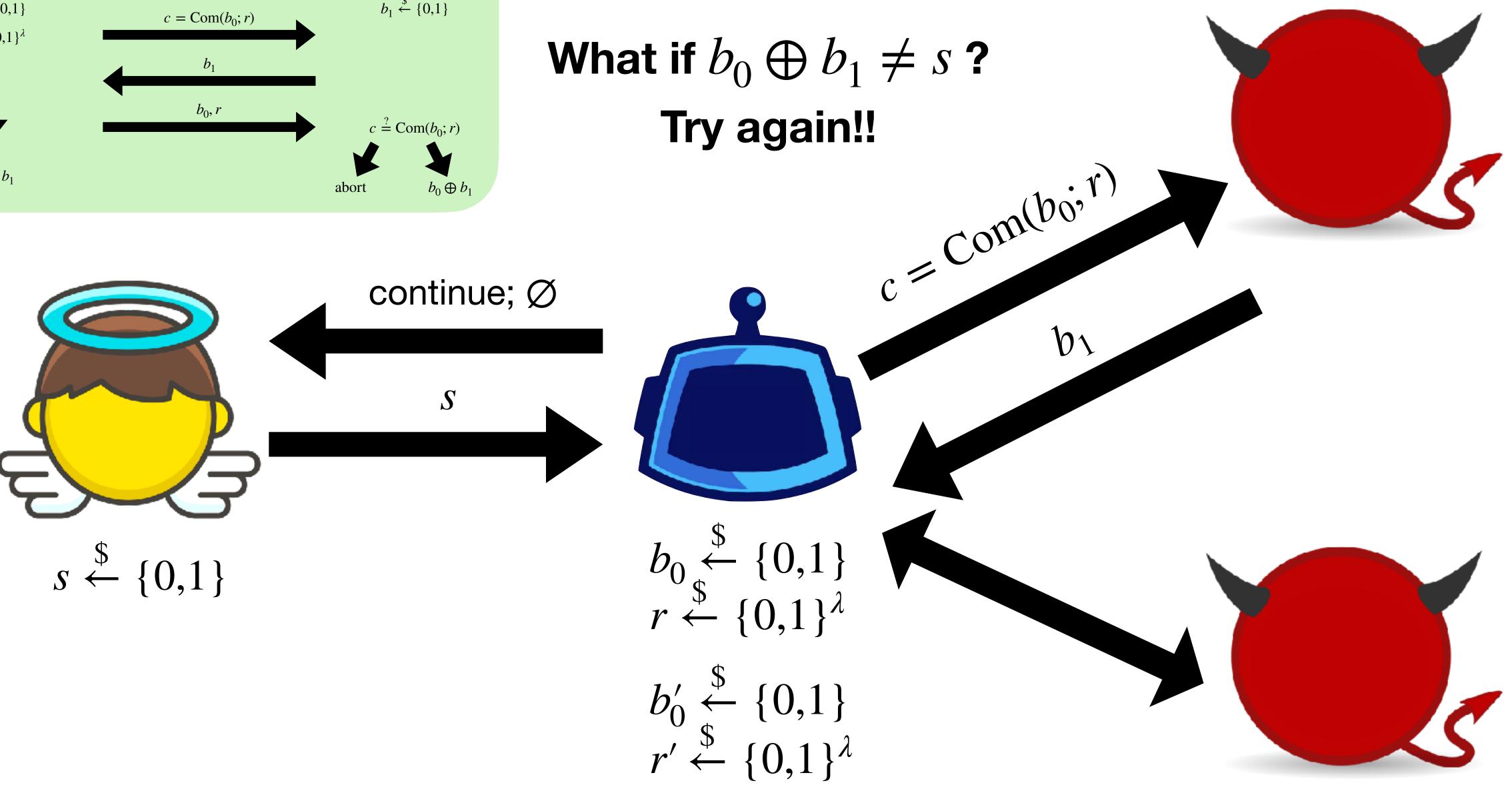
 $r \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$





 $r \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$





Today's objectives

Review malicious security (with abort)

Discuss commitments

Understand "rewinding" in simulation proofs

See a proof for a (slightly) less contrived protocol