Malicious Security, Continued

CS 598 DH

Today's objectives

Review malicious security (with abort)

Discuss commitments

Understand "rewinding" in simulation proofs
See a proof for a (slightly) less contrived protocol

Malicious Security (with abort)

A protocol Π securely realizes a functionality f in the presence of a malicious (with abort) adversary if for every real-world adversary \mathscr{A} corrupting party i, there exists an ideal-world adversary \mathcal{S}_{i} (a simulator) such that for all inputs x, y the following holds:

Ensemble of outputs of each party

Malicious security with abort ideal-world execution

honest party outputs

$$
f\left(x, y^{\prime}\right)
$$

adversary outputs...?
whatever it wants

Real World Protocol

Real World Protocol

Real World Protocol

Real World Protocol

Ideal World Protocol

Security is defined by comparing the outputs in these two worlds

Real World Protocol

Ideal World Protocol

Real World Protocol

Real World Protocol

Commitment Scheme

Commitments are digital analog of a lock box

Commitment Scheme

Commitments are digital analog of a lock box
I can put a message in the lock box and then give it to you

Commitment Scheme

Commitments are digital analog of a lock box
I can put a message in the lock box and then give it to you
I can send you a key, allowing you to open the lock box

Commitment Scheme

Commitment Scheme

Hiding

I am confident you cannot open the box without the key

You are confident I cannot tamper with the content of the box Binding

Commitment Scheme

$\operatorname{com}(x ; r)$

Commitment to x with randomness $r \stackrel{\$}{\leftarrow}\{0,1\}^{\lambda}$

Commitment Scheme

$\operatorname{com}(x ; r)$

Commitment to x with randomness $r \stackrel{\$}{\leftarrow}\{0,1\}^{\lambda}$

$\operatorname{com}(x ; r) \approx \operatorname{com}(y ; r)$

Computationally hiding

Commitment Scheme

$\operatorname{com}(x ; r)$

Commitment to x with randomness $r \stackrel{\$}{\leftarrow}\{0,1\}^{\lambda}$

$\operatorname{com}(x ; r) \approx \operatorname{com}(y ; r)$

Computationally hiding
$x \neq y \Longrightarrow \mathscr{A}$ cannot find $\operatorname{com}(x ; r)=\operatorname{com}(y ; r)$
Perfectly Binding

Example Functionality

$$
f(x, y)=x \oplus y
$$

x

An even simpler functionality

$$
f(\cdot)=\{r \mid r \stackrel{\$}{\leftarrow}\{0,1\}\}
$$

An even simpler functionality

$$
f(\cdot)=\{r \mid r \stackrel{\$}{\leftarrow}\{0,1\}\}
$$

Attempt

$$
\begin{aligned}
& b_{0}{ }^{£}\{0,1\} \\
& b_{0} \\
& b_{1} \stackrel{\$}{\leftarrow}\{0,1\}
\end{aligned}
$$

An even simpler functionality

$$
f(\cdot)=\{r \mid r \stackrel{\$}{\&}\{0,1\}\}
$$

Attempt

$$
b_{0} \stackrel{\&}{\leftarrow}\{0,1\}
$$

An even simpler functionality

$$
f(\cdot)=\{r \mid r \pm\{0,1\}\}
$$

Attempt

An even simpler functionality

$f(\cdot)=\{r \mid r \stackrel{\$}{\leftarrow}\{0,1\}\}$

Attempt

$$
b_{1} \notin\{0,1\}
$$

Can choose b_{1} based on b_{0}

Could have Bob choose first, but this just lets Bob cheat

An even simpler functionality

$f(\cdot)=\{r \mid r \leftleftarrows\{0,1\}\}$

Attempt
$b_{0} \stackrel{\&}{\leftarrow}\{0,1\}$

$$
b_{1} \stackrel{\&}{\leftarrow}\{0,1\}
$$

Can choose b_{1} based on b_{0}
Use a commitment!

How To Simulate It - A Tutorial on the Simulation

Proof Technique ${ }^{*}$

Yetuda Lindell
Dept. of Computer Science Bar-Ilan University, IsRabl lindellobiu.ac.il

April 25; 2021

Abstract
One of the most fundamental notions of cryptography is that of simulation. It stands behind One of the moost fundamental notions of cryptography is that of smulatitor. It stands behind Howevcr, writing a simulator and proving security via the usc of simulation is ε non-trivial task,
and one that mary newcomers to the field orter find difficult In this tutorial, we provide a
 guide to how to write simulatoros and prove security via the simulation paradigm. Although we
have tried to make this tutorial as stard-alone as possible, we assume some familiarity with the notions of secire encrypliun, zero-knowledge, and secure compulation.

[^0]$$
f(\cdot)=\{r \mid r \stackrel{\$}{\gtrless}\{0,1\}\}
$$
\[

$$
\begin{aligned}
& b_{0} \stackrel{\$}{\leftarrow}\{0,1\} \\
& r \stackrel{\$}{\leftarrow}\{0,1\}^{\lambda}
\end{aligned}
$$
\]

$$
c=\operatorname{Com}\left(b_{0} ; r\right)
$$

$$
b_{1} \stackrel{\$}{\leftarrow}\{0,1\}
$$

$f(\cdot)=\{r \mid r \stackrel{\$}{\gtrless}\{0,1\}\}$

$$
\begin{aligned}
& b_{0} \stackrel{\$}{\leftarrow}\{0,1\} \\
& r \stackrel{\$}{\leftarrow}\{0,1\}^{\lambda}
\end{aligned}
$$

$b_{1} \stackrel{\&}{\leftarrow}\{0,1\}$

$$
f(\cdot)=\{r \mid r \stackrel{\$}{\&}\{0,1\}\}
$$

$$
\begin{aligned}
& b_{0} \stackrel{\&}{\leftarrow}\{0,1\} \\
& r \stackrel{\$}{\leftarrow}\{0,1\}^{\lambda}
\end{aligned}
$$

$$
b_{1} \stackrel{\$}{\leftarrow}\{0,1\}
$$

$$
c \stackrel{?}{=} \operatorname{Com}\left(b_{0} ; r\right)
$$

$$
f(\cdot)=\{r \mid r \stackrel{\$}{\gtrless}\{0,1\}\}
$$

$b_{0} \oplus b_{1}$

$$
\begin{aligned}
& b_{0} \stackrel{\$}{\leftarrow}\{0,1\} \\
& r \stackrel{\$}{\leftarrow}\{0,1\}^{\lambda}
\end{aligned}
$$

$$
b_{1} \stackrel{\$}{\leftarrow}\{0,1\}
$$

$$
f(\cdot)=\{r \mid r \stackrel{\$}{\gtrless}\{0,1\}\}
$$

$$
\begin{aligned}
& b_{0} \stackrel{\$}{\leftarrow}\{0,1\} \\
& r \stackrel{\$}{\leftarrow}\{0,1\}^{\lambda}
\end{aligned}
$$

$$
b_{0} \oplus b_{1}
$$

$$
b_{1} \stackrel{\$}{\leftarrow}\{0,1\}
$$

$$
8=
$$

What if $b_{0} \oplus b_{1} \neq s$?
Try again!!

Today's objectives

Review malicious security (with abort)

Discuss commitments

Understand "rewinding" in simulation proofs
See a proof for a (slightly) less contrived protocol

[^0]: Keywords: secure computation, the simulation technique, tutorial
 'This tutorial appeared in the book Tutoriais on the Foundations of Cryptography, publisized in honor of Oded
 Golcreech's foth hlrthday.

