Malicious Security, Continued CS 598 DH

Today's objectives

Review malicious security (with abort)

Discuss commitments

Understand "rewinding" in simulation proofs

See a proof for a (slightly) less contrived protocol

Malicious Security (with abort)

A protocol Π securely realizes a functionality f in the presence of a malicious (with abort) adversary if for **every** real-world adversary \mathscr{A} corrupting party *i*, there exists an ideal-world adversary S_i (a simulator) such that for all inputs *x*, *y* the following holds: $\operatorname{Real}_{\mathscr{A}}^{\Pi}(x, y) \approx \operatorname{Ideal}_{\mathscr{S}_{i}}^{f}(x, y)$

Ensemble of outputs of each party

Malicious security with abort ideal-world execution

honest party outputs f(x, y')

adversary outputs...?

whatever it wants

 ${\mathcal X}$

Ideal World Protocol

Security is defined by comparing the outputs in these two worlds

Ideal World Protocol

X

Commitments are digital analog of a lock box

Commitments are digital analog of a lock box

I can put a message in the lock box and then give it to you

- Commitments are digital analog of a lock box
- I can put a message in the lock box and then give it to you
 - I can send you a key, allowing you to open the lock box

I am confident you cannot open the box without the key

You are confident I cannot tamper with the content of the box Binding

am confident you cannot open the box without the key

 $\operatorname{com}(x;r)$

Commitment to *x* with randomness $r \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$

$\operatorname{com}(x;r)$

$\operatorname{com}(x;r) \approx \operatorname{com}(y;r)$

Commitment to *x* with randomness $r \leftarrow \{0,1\}^{\lambda}$

Computationally hiding

$\operatorname{com}(x;r)$

$\operatorname{com}(x;r) \approx \operatorname{com}(y;r)$

Commitment to *x* with randomness $r \leftarrow \{0,1\}^{\lambda}$

Computationally hiding

 $x \neq y \implies \mathscr{A}$ cannot find com(x; r) = com(y; r)

Perfectly Binding

 $\boldsymbol{\mathcal{X}}$

$f(x, y) = x \oplus y$

Attempt

 $b_1 \stackrel{\$}{\leftarrow} \{0,1\}$

Attempt

 $b_1 \stackrel{\$}{\leftarrow} \{0,1\}$

Attempt

$$b_1 \stackrel{\$}{\leftarrow} \{0,1\}$$

Can choose b_1
based on b_0

Attempt

$$b_1 \stackrel{\$}{\leftarrow} \{0,1\}$$

Can choose b_1 based on b_0

Could have Bob choose first, but this just lets Bob cheat

Attempt

$$b_1 \stackrel{\$}{\leftarrow} \{0,1\}$$

Can choose b_1 based on b_0

Use a commitment!

How To Simulate It – A Tutorial on the Simulation **Proof Technique**^{*}

One of the most fundamental notions of cryptography is that of simulation. It stands behind the concepts of semantic security, zero knowledge, and security for multiparty computation. However, writing a simulator and proving security via the use of simulation is a non-trivial task, and one that many newcomers to the field often find difficult. In this tutorial, we provide a guide to how to write simulators and prove security via the simulation paradigm. Although we have tried to make this tutorial as stand-alone as possible, we assume some familiarity with the notions of secure encryption, zero-knowledge, and secure computation.

Keywords: secure computation, the simulation technique, tutorial

*This tutorial appeared in the book Tutorials on the Foundations of Cryptography, published in honor of Oded Goldreich's 60th birthday.

Yehuda Lindell

Dept. of Computer Science Bar-Ilan University, ISRAEL lindell@biu.ac.il

April 25, 2021

Abstract

 $b_0 \stackrel{\$}{\leftarrow} \{0,1\}$ $r \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$

$f(\cdot) = \{ r \mid r \stackrel{\$}{\leftarrow} \{0,1\} \}$

$c = \operatorname{Com}(b_0; r)$

 $b_0 \stackrel{\$}{\leftarrow} \{0,1\}$ $r \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$

$f(\cdot) = \{ r \mid r \stackrel{\$}{\leftarrow} \{0,1\} \}$

$c = \operatorname{Com}(b_0; r)$

 b_1

$b_0 \stackrel{\$}{\leftarrow} \{0,1\}$ $r \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$

$b_1 \stackrel{\$}{\leftarrow} \{0,1\}$

$c = \operatorname{Com}(b_0; r)$

 b_1

 b_0, r

 $c \stackrel{?}{=} \operatorname{Com}(b_0; r)$

 $b_0 \stackrel{\$}{\leftarrow} \{0,1\}$ $r \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$

 $b_0 \oplus b_1$

 $b_0 \stackrel{\$}{\leftarrow} \{0,1\}$ $r \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$

$b_0 \oplus b_1$

 $(b_1 = 0 \text{ if Alice aborts})$

 $r \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$

 $r \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$

 $r \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$

Today's objectives

Review malicious security (with abort)

Discuss commitments

Understand "rewinding" in simulation proofs

See a proof for a (slightly) less contrived protocol